THE RUST
PROGRAMMING
LANGUAGE

THE RUST PROGRAMMING LANGUAGE

THE RUST
PROGRAMMING
LANGUAGE

by Steve Klabnik and Carol Nichols,
with contributions from
the Rust Community

¢

no starch
press

San Francisco

THE RUST PROGRAMMING LANGUAGE. Copyright © 2019 by Mozilla Corporation and
the Rust Project Developers.
This edition has been updated to cover Rust 2018.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-7185-0044-0
ISBN-13: 978-1-7185-0044-0

Publisher: William Pollock

Production Editor: Janelle Ludowise

Cover Illustration: Karen Rustad Télva

Interior Design: Octopod Studios

Developmental Editor: Liz Chadwick

Technical Reviewers: Eduard-Mihai “eddyb” Burtescu and Alex Crichton
Copyeditor: Anne Marie Walker

Compositors: Meg Sneeringer and Janelle Ludowise

Proofreader: Paula L. Fleming

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900; info@nostarch.com

www.nostarch.com

The Library of Congress has catalogued the first edition as follows:

Names: Klabnik, Steve, author. | Nichols, Carol, 1983- eauthor.

Title: The Rust programming language / by Steve Klabnik and Carol Nichols ;
with contributions from the Rust Community.

Description: San Francisco : No Starch Press, Inc., 2018. | Includes index.

Identifiers: LCCN 2018014097 (print) | LCCN 2018019844 (ebook) | ISBN
9781593278519 (epub) | ISBN 1593278519 (epub) | ISBN 9781593278281
(paperback) | ISBN 1593278284 (paperback)

Subjects: LCSH: Rust (Computer programming language) | BISAC: COMPUTERS /
Programming / Open Source. | COMPUTERS / Programming Languages / General.
| COMPUTERS / Programming / General.

Classification: LCC QA76.73.R87 (ebook) | LCC QA76.73.R87 K53 2018 (print) |
DDC 005.13/3--dc23

LC record available at https://lccn.loc.gov/2018014097

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

About the Authors

Steve Klabnik leads the Rust documentation team and is one of Rust’s core
developers. A frequent speaker and a prolific open source contributor, he
previously worked on projects such as Ruby and Ruby on Rails.

Carol Nichols is a member of the Rust Core Team and co-founder of
Integer 32, LLC, the world’s first Rust-focused software consultancy.
Nichols organizes the Rust Belt Rust Conference.

BRIEF CONTENTS

Foreword by Nicholas Matsakis and Aaron Turon oL xix
Preface. . . oo xxi
Acknowledgments xxiii
Infroduction.o XXV
Chapter 1: Gefting Started 1
Chapter 2: Programming a GuessingGamet 13
Chapter 3: Common Programming Concepts.ot 31
Chapter 4: Understanding Ownership 59
Chapter 5: Using Structs to Structure Related Data 83
Chapter 6: Enums and Pattern Matching. 97
Chapter 7: Managing Growing Projects with Packages, Crates, and Modules. 111
Chapter 8: Common Collections 131
Chapter 9: Error Handling 151
Chapter 10: Generic Types, Traits, and Lifetimes 171
Chapter 11: Writing Automated Tests. 207
Chapter 12: An I/O Project: Building a Command Line Program. 233
Chapter 13: Functional Language Features: lterators and Closures. 263
Chapter 14: More About Cargoand Crates.ioo 291
Chapter 15: Smart Pointers. 311
Chapter 16: Fearless Concurrencyo 347

Chapter 17: Object-Oriented Programming Features of Rust 371

Chapter 18: Patterns and Matching 395

Chapter 19: Advanced Features i 417
Chapter 20: Final Project: Building a Multithreaded Web Server. 457
Appendix A: Keywords. 495
Appendix B: Operators and Symbols L 499
Appendix C: Derivable Traits. 507
Appendix D: Useful Development Tools. 511
Appendix E: Editions 515
INdEX . o 517

viii Brief Contents

CONTENTS IN DETAIL

FOREWORD by Nicholas Matsakis and Aaron Turon xix
PREFACE xXXi
ACKNOWLEDGMENTS xxiii
INTRODUCTION XXV
Who RustIs Foro XXVi
Teams of Developers XXVi
Students. . ..o XXVi
CompPanies. . . . oot e XXVi
Open Source Developers XXVi
People Who Value Speed and Stability xxvii
Who This Book Is Foro Xxvii
How to Use This Book. xxvii
Resources and How to Contribute to This Book XXiX
1
GETTING STARTED 1
Installation. 1
Command Line Notation. 2
Installing rustup on Linux ormacOS. 2
Installing rustupon Windows 3
Updating and Uninstalling 3
Troubleshooting 3
Local Documentationo 4
Hello, Worldl 4
Creating a Project Directory 4
Writing and Running a Rust Program. 5
Anatomy of aRustProgram 5
Compiling and Running Are Separate Steps.o 6
Hello, Cargol 7
Creating a Projectwith Cargo 8
Building and Running a Cargo Project. 9
BuildingforRelease. 10
Cargoas Convention 11
SUMMArY . oo 11
2
PROGRAMMING A GUESSING GAME 13
Setting UpaNew Project 14
Processing @ Guesso 14
Storing Values with Variables o o o 15

Handling Potential Failure with the Result Type 17

Printing Values with println! Placeholders 18

Testing the First Part. 18
Generating a Secret Number. 19
Using a Crate to Get More Functionality 19
Generating a Random Number. 21
Comparing the Guess to the Secret Number 23
Allowing Multiple Guesses with Looping 26
Quitting After a Correct GUESSot v i 27
Handling Invalid Inputo 28
SUMMAIY .« o oo 30
3
COMMON PROGRAMMING CONCEPTS 31
Variables and Mutability. o 32
Differences Between Variables and Constants. 34
Shadowing. 34
Data TYPes . . . 36
Scalar Types. . . oot 36
Compound TYpes . . . oot v 40
FUNCHIONS. « . 43
Function Parameters 44
Statements and Expressions in Function Bodies 45
Functions with Return Values. 47
CommeNts. . .o 49
Control Flow . . . oo 49
I EXPressions oot 49
Repetition with Loops. oo 54
SUMMAIY « o oo 57
4
UNDERSTANDING OWNERSHIP 59
What Is Ownership2 59
OwnershipRules. 61
Variable Scope. 61
The String Type. .« o oot 62
Memory and Allocation L 63
Ownership and Functions. 68
Return Valuesand Scopeo 68
References and Borrowing i 70
Mutable References. 72
Dangling References 74
The Rules of References 75
The Slice Type . . . oo oo 75
String Slices 77
Other Slices . .« oot 81
SUMMAIY « o oo 81

X Contents in Detail

5
USING STRUCTS TO STRUCTURE RELATED DATA

Defining and Instantiating Structs

Using the Field Init Shorthand When Variables and Fields
Have the Same Name. i

Creating Instances from Other Instances with Struct Update Syntax
Using Tuple Structs Without Named Fields to Create Different Types
Unit-Like Structs Without Any Fields

An Example Program Using Structs.
Refactoring with Tuples
Refactoring with Structs: Adding More Meaning
Adding Useful Functionality with Derived Traits.

Method Syntax
DefiningMethods
Methods with More Parameters.
Associated Functions
Multiple impl Blocks.

SUMMATY . .ot

6

ENUMS AND PATTERN MATCHING

Definingan Enum.
Enum Values.
The Option Enum and lts Advantages over Null Values

The match Control Flow Operator i
Patterns That Bind fo Values
Matching with Option<T>
Matches Are Exhaustive. L
The Placeholder

Concise Control Flow with iflet

SUMMATY . .o

7

MANAGING GROWING PROJECTS WITH PACKAGES,

CRATES, AND MODULES

Packages and Crates

Defining Modules to Control Scope and Privacy.

Paths for Referring to an ltem inthe Module Tree
Exposing Paths with the pub Keyword
Starting Relative Paths with super L
Making Structs and Enums Public o o

Bringing Paths info Scope with the use Keyword
Creating Idiomaticuse Paths.
Providing New Names with the as Keyword.
Re-exporting Names with pubuse.
Using External Packages
Using Nested Paths to Clean Up Large use Lists
The Glob Operator

Separating Modules into Different Files.

SUMMAIY

112
113
115
117
119
120
121
123
124
124
125
126
127
127
128

Contents in Detail

xi

8

COMMON COLLECTIONS

Storing Lists of Values with Vectors

Storing UTF-8 Encoded Text with Strings

WhatIs a String2
CreatingaNew String
Updating a Stringo oo
Indexing info SIFINGS oot
Slicing Strings. . .o oo
Methods for lterating over Strings
Strings Are Not So Simple

Storing Keys with Associated Values in Hash Maps L.

CreatingaNew HashMap
Hash Maps and Ownership o o
Accessing ValuesinaHashMap,
UpdatingaHashMap. o
Hashing Functions.

SUMMAIY « oot

9

ERROR HANDLING

Using a panicl Backirace.

Recoverable Errors with Result

Matching on Different Errors.
Shortcuts for Panic on Error: unwrap and expect.
Propagating Errors

To panicl or Notfo panic!

Examples, Prototype Code, and Tests
Cases in Which You Have More Information Than the Compiler.
Guidelines for Error Handling.,
Creating Custom Types for Validation,

SUMMAIY .« o oo

10

GENERIC TYPES, TRAITS, AND LIFETIMES

Removing Duplication by Extracting a Function
Generic Data Types . . . o oo

xii

In Function Definitions
In Struct Definitions
In Enum Definitionso
In Method Definitions.o
Performance of Code Using Generics

Contents in Detail

Creatinga New Vector
Updating a Vector.o
Dropping a Vector Drops lts Elements
Reading Elements of Vectors.
lterating over the Values ina Vector
Using an Enum to Store Multiple Types

131

132
132
132
133
133
135
136
137
137
137
138
141
142
143
144
144
144
145
146
147
149
149

151

152
153
155
158
159
160
164
165
165
166
167
169

Traits: Defining Shared Behavior 182

Defininga Trait. o 182
Implementing a Traiton aType.ot 183
Default Implementations. 185
Traits as Parameters 186
Returning Types that Implement Traits. 188
Fixing the largest Function with TraitBounds. 189
Using Trait Bounds to Conditionally Implement Methods. 191
Validating References with Lifetimes 192
Preventing Dangling References with Lifetimes. 193
The Borrow Checker 194
Generic Lifetimes in Functions. 195
Lifetime Annotation Syntax 196
Lifetime Annotations in Function Signatures. 197
Thinking in Terms of Lifetimes 199
Lifetime Annotations in Struct Definitions. 200
Lifetime Elision 201
Lifetime Annotations in Method Definitions 203
The Static Lifetime 204
Generic Type Parameters, Trait Bounds, and Lifetimes Together 205
SUMMAIY 205
11
WRITING AUTOMATED TESTS 207
How to Write Tests.o 208
The Anatomy of a Test Function. 208
Checking Results with the assert! Macro. 211
Testing Equality with the assert_eq! and assert_nel Macros 214
Adding Custom Failure Messages 216
Checking for Panics with should_panic 218
Using Result<T, E>inTestsot 221
Controlling How Tests Are Run.o 221
Running Tests in Parallel or Consecutively. 222
Showing Function Output. 222
Running a Subset of Tests by Name. 224
Ignoring Some Tests Unless Specifically Requested 226
Test Organization 227
Unit Tests . . o oo 227
Integration Tests o 228
SUMMAIY . . oo 232
12
AN 1/0 PROJECT: BUILDING A COMMAND LINE PROGRAM 233
Accepting Command Line Arguments 234
Reading the Argument Values. 234
Saving the Argument Values in Variables. 236
ReadingaFile. 237
Refactoring to Improve Modularity and Error Handling 238
Separation of Concerns for Binary Projects. 239
Fixing the Error Handling. 243

Contents in Detail

xiii

Extracting Logic frommain. 246

Splitting Code into a Llibrary Crate, 248
Developing the Library’s Functionality with Test-Driven Development. 250
Writing a Failing Test 250
Writing Code to Passthe Test. 253
Working with Environment Variables 255
Writing a Failing Test for the Case-Insensitive search Function 255
Implementing the search_case_insensitive Function 257
Writing Error Messages to Standard Error Instead of Standard Output 260
Checking Where Errors Are Written 260
Printing Errors to Standard Error 261
SUMMAIY « oot 262
13
FUNCTIONAL LANGUAGE FEATURES:
ITERATORS AND CLOSURES 263
Closures: Anonymous Functions That Can Capture Their Environment. 264
Creating an Abstraction of Behavior with Closures 264
Closure Type Inference and Annotation 269
Storing Closures Using Generic Parameters and the Fn Traits 270
Limitations of the Cacher Implementation 273
Capturing the Environment with Closures, 274
Processing a Series of ltems with lterators 276
The lterator Trait and the next Method 277
Methods That Consume the lterator, 278
Methods That Produce Other lterators 279
Using Closures That Capture Their Environment. 280
Creating Our Own lterators with the lterator Trait 281
Improving Our I/O Projectot 283
Removing a clone Using an lterator. 284
Making Code Clearer with lterator Adaptors, 286
Comparing Performance: Loops vs. lterators 287
SUMMAIY .« o oo 289
14
MORE ABOUT CARGO AND CRATES.IO 291
Customizing Builds with Release Profiles 292
Publishing a Crate to Crafes.io i 293
Making Useful Documentation Comments. oot ... 293
Exporting a Convenient Public APl with pubuse 296
Setting Up a Crates.io Account. 300
Adding MetadatatoaNew Crate, 300
Publishing to Crafes.io. 301
Publishing a New Version of an Existing Crate 302
Removing Versions from Crates.io with cargoyank 302
Cargo Workspacesot 303
Creating aWorkspace 303
Creating the Second Crate in the Workspace. 304

xiv Contents in Detail

Installing Binaries from Crates.io with cargoinstall. 308

Extending Cargo with Custom Commands. 309
SUMMAIY 309
15
SMART POINTERS 311
Using Box<T> to Pointto Data onthe Heap. 312
Using a Box<T> to Store Dataonthe Heap 313
Enabling Recursive Types with Boxes. 314
Treating Smart Pointers Like Regular References with the Deref Trait 317
Following the Pointer to the Value with the Dereference Operator 318
Using Box<T> Like aReference. 318
Defining Our Own Smart Pointer. 319
Treating a Type Like a Reference by Implementing the Deref Trait 320
Implicit Deref Coercions with Functions and Methods. 321
How Deref Coercion Interacts with Mutability 322
Running Code on Cleanup with the Drop Trait. 323
Dropping a Value Early with std::mem::drop oL 325
Rc<T>, the Reference Counted Smart Pointer 326
Using Re<T>to Share Datao 327
Cloning an Re<T> Increases the Reference Count 329
RefCell<T> and the Interior Mutability Pattern 330
Enforcing Borrowing Rules at Runtime with RefCell<T>. 330
Interior Mutability: A Mutable Borrow to an Immutable Value 331
Having Multiple Owners of Mutable Data by
Combining Re<T> and RefCell<T> 337
Reference Cycles Can leak Memory. 339
Creating aReference Cycle 339
Preventing Reference Cycles: Turning an Re<T> into a Weak<T> 341
SUMMArY . .o 346
16
FEARLESS CONCURRENCY 347
Using Threads to Run Code Simultaneously 348
Creating a New Thread with spawn 350
Waiting for All Threads to Finish Using join Handles 351
Using move Closures with Threads 353
Using Message Passing to Transfer Data Between Threads 355
Channels and Ownership Transference 358
Sending Multiple Values and Seeing the Receiver Waiting. 359
Creating Multiple Producers by Cloning the Transmitter 360
Shared-State Concurrencyot 361
Using Mutexes to Allow Access to Data from One Thread at a Time 362
Similarities Between RefCell<T>/Rc<T> and Mutex<T>/Arc<T> 368
Extensible Concurrency with the Sync and Send Traits 368
Allowing Transference of Ownership Between Threads with Send 369
Allowing Access from Multiple Threads with Sync. 369
Implementing Send and Sync Manually Is Unsafe 369
SUMMAIY 370

Contents in Detail

XV

17

OBJECT-ORIENTED PROGRAMMING FEATURES OF RUST

Characteristics of Object-Oriented Languages

18

PATTERNS AND MATCHING

All the Places Patterns Can Be Used

Multiple Patterns
Matching Ranges of Values with the ... Synfax
Destructuring to Break Apart Values. o
Ignoring Values ina Pattern
Extra Conditionals with Match Guards.
@Bindings. . ..o

SUMMAIY .« o oo

19

ADVANCED FEATURES

Unsafe RUSt. . ..

Xvi

Unsafe SUPerpowersot
Dereferencing a Raw Pointer
Calling an Unsafe Function or Method.
Accessing or Modifying a Mutable Static Variable
Implementing an Unsafe Trait
WhentoUse Unsafe Code.

Contents in Detail

Objects Contain Data and Behavior,
Encapsulation That Hides Implementation Details
Inheritance as a Type System and as Code Sharing
Using Trait Objects That Allow for Values of Different Types
Defining a Trait for Common Behavior.
Implementing the Trait
Trait Objects Perform Dynamic Dispatch
Object Safety Is Required for Trait Objects.,
Implementing an Object-Oriented Design Pattern
Defining Post and Creating a New Instance in the Draft State.
Storing the Text of the Post Content
Ensuring the Content of a Draft PostIs Empty
Requesting a Review of the Post Changes Its State.
Adding the approve Method that Changes the Behavior of content
Trade-offs of the State Pattern
Summary

match Arms . ..o
Conditional if let Expressions
while let Conditional Loops
forLoops . .o oo
let Statements
Function Parameters L
Refutability: Whether a Pattern Might Fail to Match
Pattern Syntax

Matching Literals.
Matching Named Variables,

371

371
372
372
374
375
375
377
380
380
382
383
384
384
385
386
389
393

395

396
396
396
398
398
399
400
401
402
402
403
404
404
405
409
413
415
416

Advanced Traifs.o
Specifying Placeholder Types in Trait Definitions with Associated Types.
Default Generic Type Parameters and Operator Overloading.

Fully Qualified Syntax for Disambiguation:
Calling Methods with the Same Name
Using Supertraits to Require One Trait's Functionality Within Another Trait. . .
Using the Newtype Pattern to Implement External Traits on External Types . . .
Advanced Typesot
Using the Newtype Pattern for Type Safety and Abstraction
Creating Type Synonyms with Type Aliases
The Never Type That Never Returns.
Dynamically Sized Types and the Sized Trait
Advanced Functionsand Closures

Macros. .. .o
The Difference Between Macros and Functions
Declarative Macros with macro_rules! for General Metaprogramming.
Procedural Macros for Generating Code from Attributes
How to Write a Custom derive Macro.
Attribute-like macros ... L
Functiondlike macros

SUMMATY . . ot

20
FINAL PROJECT: BUILDING A MULTITHREADED WEB SERVER

Building a Single-Threaded Web Server
Listening fo the TCP Connection it
Reading the Request
A Closer Look at an HTTP Request.
Writinga Response.
Returning Real HTML.
Validating the Request and Selectively Responding
ATouchof Refactoring
Turning Our Single-Threaded Server into a Multithreaded Server
Simulating a Slow Request in the Current Server Implementation.
Improving Throughput with a Thread Pool
Graceful Shutdownand Cleanup
Implementing the Drop Trait on ThreadPool
Signaling to the Threads to Stop Listening for Jobs.
SUMMATY . .t

A
KEYWORDS
Keywords Currently inUse

Keywords Reserved for Future Use o i
Raw Identifiers.

Contents in Detail

457

458
458
460
462
463
464
465
466
468
468
469
487
487
489
493

xvii

OPERATORS AND SYMBOLS

Operators
Non-operator Symbols

C

DERIVABLE TRAITS

Debug for Programmer Output.o o
PartialEq and Eq for Equality Comparisons
PartialOrd and Ord for Ordering Comparisonst
Clone and Copy for Duplicating Values
Hash for Mapping a Value to a Value of Fixed Size.
Default for Default Values

USEFUL DEVELOPMENT TOOLS

Automatic Formatting with rustfmt. L
Fix Your Code with rustfix o

More Lints with Clippy

IDE Integration Using the Rust Language Server

EDITIONS

INDEX

xviii

Contents in Detail

499

499
501

507

508
508
509
509
510
510

311

511
512
513
514

515

317

FOREWORD

It wasn’t always so clear, but the Rust programming lan-
guage is fundamentally about empowerment: no matter
what kind of code you are writing now, Rust empowers
you to reach further, to program with confidence in a
wider variety of domains than you did before.

Take, for example, “systems-level” work that deals with low-level
details of memory management, data representation, and concurrency.
Traditionally, this realm of programming is seen as arcane, accessible only
to a select few who have devoted the necessary years learning to avoid its
infamous pitfalls. And even those who practice it do so with caution, lest
their code be open to exploits, crashes, or corruption.

Rust breaks down these barriers by eliminating the old pitfalls and
providing a friendly, polished set of tools to help you along the way.
Programmers who need to “dip down” into lower-level control can do
so with Rust, without taking on the customary risk of crashes or security

XX

Foreword

holes, and without having to learn the fine points of a fickle toolchain.
Better yet, the language is designed to guide you naturally towards reli-
able code that is efficient in terms of speed and memory usage.

Programmers who are already working with low-level code can use Rust
to raise their ambitions. For example, introducing parallelism in Rust is a
relatively low-risk operation: the compiler will catch the classical mistakes for
you. And you can tackle more aggressive optimizations in your code with the
confidence that you won’t accidentally introduce crashes or vulnerabilities.

But Rust isn’t limited to low-level systems programming. It’s expressive
and ergonomic enough to make CLI apps, web servers, and many other
kinds of code quite pleasant to write—you’ll find simple examples of both
later in the book. Working with Rust allows you to build skills that transfer
from one domain to another; you can learn Rust by writing a web app and
then apply those same skills to target your Raspberry Pi.

This book fully embraces the potential of Rust to empower its users.
It’s a friendly and approachable text intended to help you level up not just
your knowledge of Rust but also your reach and confidence as a program-
mer in general. So dive in, get ready to learn—and welcome to the Rust
community!

Nicholas Matsakis and Aaron Turon

PREFACE

This new version of the text assumes you're using
Rust 1.31.0 or later with edition="2018" in Cargo.toml
of all projects to use Rust 2018 Edition idioms. See
“Installation” on page 1 to install or update Rust,
and see the new Appendix E for information on
editions.

The 2018 Edition of the Rust language includes a number of improve-
ments that make Rust more ergonomic and easier to learn. This rendition
of the book contains a number of changes to reflect those improvements:

e Chapter 7, “Managing Growing Projects with Packages, Crates, and
Modules,” has been mostly rewritten. The module system and the way
paths work in the 2018 Edition were made more consistent.

e Chapter 10 has new sections titled “Traits as Parameters” and “Returning
Types that Implement Traits” that explain the new impl Trait syntax.

e Chapter 11 has a new section titled “Using Result<T, E> in Tests” that
shows how to write tests that use the ? operator.

Preface

e The “Advanced Lifetimes” section in Chapter 19 was removed because
compiler improvements have made the constructs in that section even
rarer.

e The previous Appendix D, “Macros,” has been expanded to include pro-
cedural macros and was moved to the “Macros” section in Chapter 19.

e Appendix A, “Keywords,” also explains the new raw identifiers feature
that enables code written in the 2015 Edition and the 2018 Edition to
interoperate.

e Appendix D is now titled “Useful Development Tools” and covers
recently released tools that help you write Rust code.

e We fixed a number of small errors and imprecise wording throughout
the book. Thank you to the readers who reported them!

Note that any code in the first rendition of this book that compiled will
continue to compile without edition="2018" in the project’s Cargo.toml, even
as you update the Rust compiler version you’re using. That’s Rust’s back-
ward compatibility guarantees at work!

ACKNOWLEDGMENTS

We would like to thank everyone who has worked on
the Rust language for creating an amazing language
worth writing a book about. We’re grateful to everyone
in the Rust community for being welcoming and creat-
ing an environment worth welcoming more folks into.

We’re especially thankful for everyone who read early versions of
this book online and provided feedback, bug reports, and pull requests.
Special thanks to Eduard-Mihai Burtescu and Alex Crichton for provid-
ing technical review and Karen Rustad Toélva for the cover art. Thank
you to our team at No Starch, including Bill Pollock, Liz Chadwick, and
Janelle Ludowise, for improving this book and bringing it to print.

Steve would like to thank Carol for being an amazing co-author.
Without her, this book would have been of much lesser quality and taken
a lot more time. Additional thanks to Ashley Williams, who provided an
incredible amount of support in the beginning, in the middle, and in the
end <3.

Carol would like to thank Steve for piquing her interest in Rust and for
the opportunity to work on this book. She’s grateful to her family for their
constant love and support, especially her husband Jake Goulding and her
daughter Vivian.

XXiV Acknowledgments

INTRODUCTION

Welcome to The Rust Programming Language,

an introductory book about Rust. The Rust

programming language helps you write faster,
more reliable software. High-level ergonomics

and low-level control are often at odds in program-
ming language design; Rust challenges that conflict.
Through balancing powerful technical capacity and a
great developer experience, Rust gives you the option
to control low-level details (such as memory usage)
without all the hassle traditionally associated with
such control.

xxvi

Who Rust Is For

Introduction

Rust is ideal for many people for a variety of reasons. Let’s look at a few of
the most important groups.

Teams of Developers

Rust is proving to be a productive tool for collaboration among large teams of
developers with varying levels of systems programming knowledge. Low-level
code is prone to a variety of subtle bugs, which in most other languages can
be caught only through extensive testing and careful code review by experi-
enced developers. In Rust, the compiler plays a gatekeeper role by refusing to
compile code with these elusive bugs, including concurrency bugs. By work-
ing alongside the compiler, the team can spend their time focusing on the
program’s logic rather than chasing down bugs.

Rust also brings contemporary developer tools to the systems pro-
gramming world:

e (Cargo, the included dependency manager and build tool, makes adding,
compiling, and managing dependencies painless and consistent across
the Rust ecosystem.

e Rustfmt ensures a consistent coding style across developers.

e The Rust Language Server powers Integrated Development Environment
(IDE) integration for code completion and inline error messages.

By using these and other tools in the Rust ecosystem, developers can be
productive while writing systems-level code.

Students

Rust is for students and those who are interested in learning about systems
concepts. Using Rust, many people have learned about topics like operat-
ing systems development. The community is very welcoming and happy to
answer student questions. Through efforts such as this book, the Rust teams
want to make systems concepts more accessible to more people, especially
those new to programming.

Companies

Hundreds of companies, large and small, use Rust in production for a variety
of tasks. Those tasks include command line tools, web services, DevOps
tooling, embedded devices, audio and video analysis and transcoding,
cryptocurrencies, bioinformatics, search engines, Internet of Things appli-
cations, machine learning, and even major parts of the Firefox web browser.

Open Source Developers

Rust is for people who want to build the Rust programming language, com-
munity, developer tools, and libraries. We’d love to have you contribute to
the Rust language.

People Who Valve Speed and Stability

Rust is for people who crave speed and stability in a language. By speed,

we mean the speed of the programs that you can create with Rust and the
speed at which Rust lets you write them. The Rust compiler’s checks ensure
stability through feature additions and refactoring. This is in contrast to the
brittle legacy code in languages without these checks, which developers are
often afraid to modify. By striving for zero-cost abstractions, higher-level
features that compile to lower-level code as fast as code written manually,
Rust endeavors to make safe code be fast code as well.

The Rust language hopes to support many other users as well; those
mentioned here are merely some of the biggest stakeholders. Overall,
Rust’s greatest ambition is to eliminate the trade-offs that programmers
have accepted for decades by providing safety and productivity, speed and
ergonomics. Give Rust a try and see if its choices work for you.

Who This Book Is For

This book assumes that you've written code in another programming lan-
guage but doesn’t make any assumptions about which one. We’ve tried to
make the material broadly accessible to those from a wide variety of pro-
gramming backgrounds. We don’t spend a lot of time talking about what
programming is or how to think about it. If you're entirely new to program-
ming, you would be better served by reading a book that specifically pro-
vides an introduction to programming.

How to Use This Book

In general, this book assumes that you're reading it in sequence from front
to back. Later chapters build on concepts in earlier chapters, and earlier
chapters might not delve into details on a topic; we typically revisit the topic
in a later chapter.

You’ll find two kinds of chapters in this book: concept chapters and
project chapters. In concept chapters, you'll learn about an aspect of Rust.
In project chapters, we’ll build small programs together, applying what
you've learned so far. Chapters 2, 12, and 20 are project chapters; the rest
are concept chapters.

Chapter 1 explains how to install Rust, how to write a Hello, World!
program, and how to use Cargo, Rust’s package manager and build tool.
Chapter 2 is a hands-on introduction to the Rust language. Here we cover
concepts at a high level, and later chapters will provide additional detail. If
you want to get your hands dirty right away, Chapter 2 is the place for that.
At first, you might even want to skip Chapter 3, which covers Rust features
similar to those of other programming languages, and head straight to
Chapter 4 to learn about Rust’s ownership system. However, if you're a partic-
ularly meticulous learner who prefers to learn every detail before moving on

Introduction Xxvii

xxviii

Introduction

to the next, you might want to skip Chapter 2 and go straight to Chapter 3,
returning to Chapter 2 when you’d like to work on a project applying the
details you've learned.

Chapter 5 discusses structs and methods, and Chapter 6 covers enums,
match expressions, and the if let control flow construct. You'll use structs
and enums to make custom types in Rust.

In Chapter 7, you’ll learn about Rust’s module system and about privacy
rules for organizing your code and its public Application Programming
Interface (API). Chapter 8 discusses some common collection data struc-
tures that the standard library provides, such as vectors, strings, and hash
maps. Chapter 9 explores Rust’s error-handling philosophy and techniques.

Chapter 10 digs into generics, traits, and lifetimes, which give you the
power to define code that applies to multiple types. Chapter 11 is all about
testing, which even with Rust’s safety guarantees is necessary to ensure
your program’s logic is correct. In Chapter 12, we’ll build our own imple-
mentation of a subset of functionality from the grep command line tool
that searches for text within files. For this, we’ll use many of the concepts
we discussed in the previous chapters.

Chapter 13 explores closures and iterators: features of Rust that come
from functional programming languages. In Chapter 14, we’ll examine
Cargo in more depth and talk about best practices for sharing your libraries
with others. Chapter 15 discusses smart pointers that the standard library
provides and the traits that enable their functionality.

In Chapter 16, we’ll walk through different models of concurrent
programming and talk about how Rust helps you to program in multiple
threads fearlessly. Chapter 17 looks at how Rust idioms compare to object-
oriented programming principles you might be familiar with.

Chapter 18 is a reference on patterns and pattern matching, which are
powerful ways of expressing ideas throughout Rust programs. Chapter 19
contains a smorgasbord of advanced topics of interest, including unsafe Rust,
macros, and more about traits, types, functions, and closures.

In Chapter 20, we’ll complete a project in which we’ll implement a low-
level multithreaded web server!

Finally, some appendixes contain useful information about the lan-
guage in a more reference-like format. Appendix A covers Rust’s keywords,
Appendix B covers Rust’s operators and symbols, Appendix C covers deriv-
able traits provided by the standard library, Appendix D covers some useful
development tools, and Appendix E explains Rust editions.

There is no wrong way to read this book: if you want to skip ahead, go
for it! You might have to jump back to earlier chapters if you experience any
confusion. But do whatever works for you.

An important part of the process of learning Rust is learning how to read
the error messages the compiler displays: these will guide you toward work-
ing code. As such, we’ll provide many examples that don’t compile along
with the error message the compiler will show you in each situation. Know
that if you enter and run a random example, it may not compile! Make sure

you read the surrounding text to see whether the example you're trying to

run is meant to error. In most situations, we’ll lead you to the correct version
of any code that doesn’t compile.

Resources and How to Contribute to This Book

This book is open source. If you find an error, please don’t hesitate to file
an issue or send a pull request on GitHub at https://github.com/rust-lang/
book/. Please see CONTRIBUTING.md at hitps://github.com/rust-lang/book/
blob/master/CONTRIBUTING.md for more details.

The source code for the examples in this book, errata, and other infor-
mation are available at Attps://www.nostarch.com/Rust2018/.

Introduction XXix

http://github.com/rust-lang/book/
http://github.com/rust-lang/book/
http://github.com/rust-lang/book/blob/master/CONTRIBUTING.md
http://github.com/rust-lang/book/blob/master/CONTRIBUTING.md
https://www.nostarch.com/Rust2018

GETTING STARTED

Let’s start your Rust journey! There’s a lot to
learn, but every journey starts somewhere. In

this chapter, we’ll discuss:

e Installing Rust on Linux, macOS, and Windows
e Writing a program that prints Hello, world!

e Using cargo, Rust’s package manager and build
system

Installation

The first step is to install Rust. We’ll download Rust through rustup, a
command line tool for managing Rust versions and associated tools.
You’ll need an internet connection for the download.

If you prefer not to use rustup for some reason, please see the Rust installation page at
https://www.rust-lang.org/tools/install/ for other options.

2

Chapter 1

The following steps install the latest stable version of the Rust compiler.
Rust’s stability guarantees ensure that all the examples in the book that
compile will continue to compile with newer Rust versions. The output
might differ slightly between versions, because Rust often improves error
messages and warnings. In other words, any newer, stable version of Rust
you install using these steps should work as expected with the content of
this book.

COMMAND LINE NOTATION

In this chapter and throughout the book, we'll show some commands used

in the terminal. Lines that you should enter in a terminal all start with $. You
don't need fo type in the $ character; it indicates the start of each command.
Lines that don't start with $ typically show the output of the previous command.
Additionally, PowerShell-specific examples will use > rather than $.

Installing rustup on Linux or macOS

If youre using Linux or macOS, open a terminal and enter the following
command:

$ curl https://sh.rustup.rs -sSf | sh

The command downloads a script and starts the installation of the
rustup tool, which installs the latest stable version of Rust. You might be
prompted for your password. If the install is successful, the following line
will appear:

Rust is installed now. Great!

If you prefer, feel free to download the script and inspect it before run-
ning it.

The installation script automatically adds Rust to your system PATH
after your next login. If you want to start using Rust right away instead of
restarting your terminal, run the following command in your shell to add
Rust to your system PATH manually:

$ source $HOME/.cargo/env

Alternatively, you can add the following line to your ~/.bash_profile:

$ export PATH="$HOME/.cargo/bin:$PATH"

Additionally, you’ll need a linker of some kind. It’s likely one is already
installed, but when you try to compile a Rust program and get errors indi-
cating that a linker could not execute, that means a linker isn’t installed on

your system and you’ll need to install one manually. C compilers usually
come with the correct linker. Check your platform’s documentation for
how to install a C compiler. Also, some common Rust packages depend on
C code and will need a C compiler. Therefore, it might be worth installing
one now.

Installing rustup on Windows

On Windows, go to https://www.rust-lang.org/tools/install/ and follow the
instructions for installing Rust. At some point in the installation, you’ll
receive a message explaining that you’ll also need the C++ build tools for
Visual Studio 2013 or later. The easiest way to acquire the build tools is to
install Build Tools for Visual Studio 2019 at https://www.visualstudio.com/
downloads/#build-tools-for-visual-studio-2019. The tools are in the Other Tools
and Frameworks section.

The rest of this book uses commands that work in both ¢md.exe and
PowerShell. If there are specific differences, we’ll explain which to use.

Updating and Uninstalling

After you've installed Rust via rustup, updating to the latest version is easy.
From your shell, run the following update script:

$ rustup update

To uninstall Rust and rustup, run the following uninstall script from
your shell:

$ rustup self uninstall

Troubleshooting

To check whether you have Rust installed correctly, open a shell and enter
this line:

$ rustc --version

You should see the version number, commit hash, and commit date for
the latest stable version that has been released in the following format:

rustc x.y.z (abcabcabc yyyy-mm-dd)

If you see this information, you have installed Rust successfully! If you
don’t see this information and youre on Windows, check that Rust is in your
%PATH% system variable. If that’s all correct and Rust still isn’t working, there
are a number of places you can get help. The easiest is the #beginners chan-
nel on the official Rust Discord at https://discord.gg/rust-lang. There, you can

Gelting Started 3

https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2019
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2019
https://discord.gg/rust-lang

4

chat with other Rustaceans (a silly nickname we call ourselves) who can help
you out. Other great resources include the Users forum at Atps://users.rust
-lang.org/ and Stack Overflow at http://stackoverflow.com/questions/tagged/rust/.

Local Documentation

The installer also includes a copy of the documentation locally, so you can
read it offline. Run rustup doc to open the local documentation in your
browser.

Any time a type or function is provided by the standard library and
you’re not sure what it does or how to use it, use the application program-
ming interface (API) documentation to find out!

Hello, World!

Chapter 1

Now that you've installed Rust, let’s write your first Rust program. It’s trad-
itional when learning a new language to write a little program that prints
the text Hello, world! to the screen, so we’ll do the same here!

This book assumes basic familiarity with the command line. Rust makes no specific
demands about your editing or tooling or where your code lives, so if you prefer to use
an integrated development environment (IDE) instead of the command line, feel free
to use your favorite IDE. Many IDEs now have some degree of Rust support; check
the IDE’s documentation for details. Recently, the Rust team has been focusing on
enabling great IDE support, and progress has been made rapidly on that front!

CGreating a Project Directory

You’ll start by making a directory to store your Rust code. It doesn’t matter

to Rust where your code lives, but for the exercises and projects in this book,
we suggest making a projects directory in your home directory and keeping all
your projects there.

Open a terminal and enter the following commands to make a projects
directory and a directory for the Hello, world! project within the projects
directory.

For Linux, macOS, and PowerShell on Windows, enter this:

$ mkdir ~/projects
$ cd ~/projects
$ mkdir hello_world
$ cd hello_world

For Windows CMD, enter this:

> mkdir "%USERPROFILE%\projects"
> cd /d "%USERPROFILE%\projects"
> mkdir hello_world

> cd hello_world

https://users.rust-lang.org/
https://users.rust-lang.org/

main.rs

Writing and Running a Rust Program

Next, make a new source file and call it main.rs. Rust files always end with
the .rs extension. If you're using more than one word in your filename, use
an underscore to separate them. For example, use hello_world.rs rather than
helloworld.rs.

Now open the main.rs file you just created and enter the code in Listing 1-1.

fn main() {
println!("Hello, world!");
}

Listing 1-1: A program that prints Hello, world!

Save the file and go back to your terminal window. On Linux or macOS,
enter the following commands to compile and run the file:

$ rustc main.rs
$./main
Hello, world!

On Windows, enter the command .\main.exe instead of ./main:

> rustc main.rs
> .\main.exe
Hello, world!

Regardless of your operating system, the string Hello, world! should print
to the terminal. If you don’t see this output, refer to “Iroubleshooting” on
page 3 for ways to get help.

If Hello, world! did print, congratulations! You've officially written a
Rust program. That makes you a Rust programmer—welcome!

Anatomy of a Rust Program

Let’s review in detail what just happened in your Hello, world! program.
Here’s the first piece of the puzzle:

fn main() {

}

These lines define a function in Rust. The main function is special: it is
always the first code that runs in every executable Rust program. The first
line declares a function named main that has no parameters and returns
nothing. If there were parameters, they would go inside the parentheses, ().

Also, note that the function body is wrapped in curly brackets, {}. Rust
requires these around all function bodies. It’s good style to place the open-
ing curly bracket on the same line as the function declaration, adding one
space in between.

Gelting Started 5

6

Chapter 1

At the time of this writing, an automatic formatter tool called rustfmt is
under development. If you want to stick to a standard style across Rust proj-
ects, rustfmt will format your code in a particular style. The Rust team plans
to eventually include this tool with the standard Rust distribution, like rustc.
So depending on when you read this book, it might already be installed on
your computer! Check the online documentation for more details.

Inside the main function is the following code:

println!("Hello, world!");

This line does all the work in this little program: it prints text to the
screen. There are four important details to notice here. First, Rust style is
to indent with four spaces, not a tab.

Second, println! calls a Rust macro. If it called a function instead, it
would be entered as println (without the !). We’ll discuss Rust macros in
more detail in Chapter 19. For now, you just need to know that using a !
means that you’re calling a macro instead of a normal function.

Third, you see the "Hello, world!" string. We pass this string as an argu-
ment to println!, and the string is printed to the screen.

Fourth, we end the line with a semicolon (;), which indicates that this
expression is over and the next one is ready to begin. Most lines of Rust
code end with a semicolon.

Compiling and Running Are Separate Steps

You've just run a newly created program, so let’s examine each step in the
process.

Before running a Rust program, you must compile it using the Rust
compiler by entering the rustc command and passing it the name of your
source file, like this:

$ rustc main.rs

If you have a C or C++ background, you’ll notice that this is similar to
gce or clang. After compiling successfully, Rust outputs a binary executable.

On Linux, macOS, and PowerShell on Windows, you can see the exe-
cutable by entering the 1s command in your shell. On Linux and macOS,
you’ll see two files. With PowerShell on Windows, you’ll see the same three
files that you would see using CMD.

$ 1s
main main.rs

With CMD on Windows, you would enter the following:

> dir /B %= the /B option says to only show the file names =%
main.exe
main.pdb
main.rs

This shows the source code file with the .rs extension, the executable
file (main.exe on Windows but main on all other platforms), and, when using
Windows, a file containing debugging information with the .pdb extension.
From here, you run the main or main.exe file, like this:

$./main # or .\main.exe on Windows

If main.rs was your Hello, world! program, this line would print Hello,
world! to your terminal.

If you're more familiar with a dynamic language, such as Ruby, Python,
or JavaScript, you might not be used to compiling and running a program
as separate steps. Rust is an ahead-of-time compiled language, meaning you can
compile a program and give the executable to someone else, and they can
run it even without having Rust installed. If you give someone a .75, .py, or js
file, they need to have a Ruby, Python, or JavaScript implementation installed
(respectively). But in those languages, you need only one command to com-
pile and run your program. Everything is a trade-off in language design.

Just compiling with rustc is fine for simple programs, but as your project
grows, you'll want to manage all the options and make it easy to share your
code. Next, we’ll introduce you to the Cargo tool, which will help you write
real-world Rust programs.

Hello, Cargo!

Cargo is Rust’s build system and package manager. Most Rustaceans use
this tool to manage their Rust projects because Cargo handles a lot of tasks
for you, such as building your code, downloading the libraries your code
depends on, and building those libraries. (We call libraries your code needs
dependencies.)

The simplest Rust programs, like the one we’ve written so far, don’t have
any dependencies. So if we had built the Hello, world! project with Cargo, it
would only use the part of Cargo that handles building your code. As you
write more complex Rust programs, you’ll add dependencies, and if you start
a project using Cargo, adding dependencies will be much easier to do.

Because the vast majority of Rust projects use Cargo, the rest of
this book assumes that you're using Cargo, too. Cargo comes installed
with Rust if you used the official installers discussed in “Installation”
on page 1. If you installed Rust through some other means, check
whether Cargo is installed by entering the following into your terminal:

$ cargo --version

If you see a version number, you have it! If you see an error, such as
command not found, look at the documentation for your method of installa-
tion to determine how to install Cargo separately.

Gelting Started 7

NOTE

Cargo.toml

Chapter 1

Creating a Project with Cargo

Let’s create a new project using Cargo and look at how it differs from our
original Hello, world! project. Navigate back to your projects directory (or
wherever you decided to store your code). Then, on any operating system,
run the following:

$ cargo new hello_cargo
$ cd hello_cargo

The first command creates a new directory called hello_cargo. We’ve
named our project hello_cargo, and Cargo creates its files in a directory of
the same name.

Go into the hello_cargo directory and list the files. You’ll see that Cargo
has generated two files and one directory for us: a Cargo.toml file and a src
directory with a main.rs file inside. It has also initialized a new Git repository
along with a .gitignore file.

Git is a common version control system. You can change cargo new to use a different
version control system or no version control system by using the --vcs flag. Run cargo
new --help to see the available options.

Open Cargo.toml in your text editor of choice. It should look similar to
the code in Listing 1-2.

[package]

name = "hello_cargo"

version = "0.1.0"

authors = ["Your Name <you@example.com>"]
edition = "2018"

[dependencies]

Listing 1-2: Contents of Cargo.tom| generated by cargo new

This file is in the TOML (Tom’s Obvious, Minimal Language) format,
which is Cargo’s configuration format.

The first line, [package], is a section heading that indicates that the fol-
lowing statements are configuring a package. As we add more information
to this file, we’ll add other sections.

The next four lines set the configuration information Cargo needs to
compile your program: the name, the version, who wrote it, and the edition
of Rust to use. Cargo gets your name and email information from your envi-
ronment, so if that information is not correct, fix the information now and
then save the file. We’ll talk about the edition key in Appendix E.

The last line, [dependencies], is the start of a section for you to list any
of your project’s dependencies. In Rust, packages of code are referred to as
crates. We won’t need any other crates for this project, but we will in the first
project in Chapter 2, so we’ll use this dependencies section then.

src/main.rs

Now open sr¢/main.rs and take a look:

fn main() {
println!("Hello, world!");
}

Cargo has generated a Hello, world! program for you, just like the one
we wrote in Listing 1-1! So far, the differences between our previous project
and the project Cargo generates are that Cargo placed the code in the src
directory and we have a Cargo.toml! configuration file in the top directory.

Cargo expects your source files to live inside the src directory. The top-
level project directory is just for README files, license information, config-
uration files, and anything else not related to your code. Using Cargo helps
you organize your projects. There’s a place for everything, and everything is
in its place.

If you started a project that doesn’t use Cargo, as we did with the Hello,
world! project, you can convert it to a project that does use Cargo. Move the
project code into the sr¢ directory and create an appropriate Cargo.tom! file.

Building and Running a Cargo Project

Now let’s look at what’s different when we build and run the Hello, world!
program with Cargo! From your hello_cargo directory, build your project by
entering the following command:

$ cargo build
Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
Finished dev [unoptimized + debuginfo] target(s) in 2.85 secs

This command creates an executable file in target/debug/hello_cargo (or
target\debug\hello_cargo.exe on Windows) rather than in your current direc-
tory. You can run the executable with this command:

$./target/debug/hello_cargo # or .\target\debug\hello_cargo.exe on Windows
Hello, world!

If all goes well, Hello, world! should print to the terminal. Running
cargo build for the first time also causes Cargo to create a new file at the top
level: Cargo.lock. This file keeps track of the exact versions of dependencies
in your project. This project doesn’t have dependencies, so the file is a bit
sparse. You won’t ever need to change this file manually; Cargo manages its
contents for you.

We just built a project with cargo build and ran it with ./target/debug/
hello_cargo, but we can also use cargo run to compile the code and then run
the resulting executable all in one command:

$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running "target/debug/hello_cargo’

Hello, world!

Gelting Started 9

10

Chapter 1

Notice that this time we didn’t see output indicating that Cargo was
compiling hello_cargo. Cargo figured out that the files hadn’t changed, so it
justran the binary. If you had modified your source code, Cargo would have
rebuilt the project before running it, and you would have seen this output:

$ cargo run
Compiling hello cargo vo.1.0 (file:///projects/hello_cargo)
Finished dev [unoptimized + debuginfo] target(s) in 0.33 secs
Running "target/debug/hello_cargo”
Hello, world!

Cargo also provides a command called cargo check. This command
quickly checks your code to make sure it compiles but doesn’t produce
an executable:

$ cargo check
Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)
Finished dev [unoptimized + debuginfo] target(s) in 0.32 secs

Why would you not want an executable? Often, cargo check is much
faster than cargo build, because it skips the step of producing an executable.
If you’re continually checking your work while writing the code, using cargo
check will speed up the process! As such, many Rustaceans run cargo check
periodically as they write their program to make sure it compiles. Then
they run cargo build when they’re ready to use the executable.

Let’s recap what we’ve learned so far about Cargo:

e We can build a project using cargo build or cargo check.
e We can build and run a project in one step using cargo run.

e Instead of saving the result of the build in the same directory as our
code, Cargo stores it in the target/debug directory.

An additional advantage of using Cargo is that the commands are the
same no matter which operating system you’re working on. So, at this point,
we’ll no longer provide specific instructions for Linux and macOS versus
Windows.

Building for Release

When your project is finally ready for release, you can use cargo build --release
to compile it with optimizations. This command will create an executable in
target/release instead of target/debug. The optimizations make your Rust code
run faster, but turning them on lengthens the time it takes for your program
to compile. This is why there are two different profiles: one for development,
when you want to rebuild quickly and often, and another for building the
final program you’ll give to a user that won’t be rebuilt repeatedly and that
will run as fast as possible. If you’re benchmarking your code’s running time,
be sure to run cargo build --release and benchmark with the executable in
target/release.

Cargo as Convention

With simple projects, Cargo doesn’t provide a lot of value over just using
rustc, but it will prove its worth as your programs become more intricate.
With complex projects composed of multiple crates, it’s much easier to let
Cargo coordinate the build.

Even though the hello_cargo project is simple, it now uses much of the
real tooling you'll use in the rest of your Rust career. In fact, to work on
any existing projects, you can use the following commands to check out the
code using Git, change to that project’s directory, and build:

$ git clone someurl.com/someproject
$ cd someproject
$ cargo build

For more information about Cargo, check out its documentation at
https://doc.rust-lang.org/cargo/.

Summary

You're already off to a great start on your Rust journey! In this chapter,
you’ve learned how to:

e Install the latest stable version of Rust using rustup

e Update to a newer Rust version

e Open locally installed documentation

e Write and run a Hello, world! program using rustc directly

e Create and run a new project using the conventions of Cargo

This is a great time to build a more substantial program to get used
to reading and writing Rust code. So, in Chapter 2, we’ll build a guess-
ing game program. If you would rather start by learning how common
programming concepts work in Rust, see Chapter 3 and then return to
Chapter 2.

Getting Started 11

https://doc.rust-lang.org/cargo/

PROGRAMMING A
GUESSING GAME

Let’s jump into Rust by working through
a hands-on project together! This chap-

ter introduces you to a few common Rust
concepts by showing you how to use them in a

real program. You'll learn about let, match, methods,

associated functions, using external crates, and more!

The following chapters will explore these ideas

in more detail. In this chapter, you’ll practice the

fundamentals.

We’ll implement a classic beginner programming problem: a guessing
game. Here’s how it works: the program will generate a random integer
between 1 and 100. It will then prompt the player to enter a guess. After a
guess is entered, the program will indicate whether the guess is too low or
too high. If the guess is correct, the game will print a congratulatory message
and exit.

Setting Up a New Project

Cargo.toml

src/main.rs

To set up a new project, go to the projects directory that you created in
Chapter 1 and make a new project using Cargo, like so:

$ cargo new guessing_game
$ cd guessing_game

The first command, cargo new, takes the name of the project (guessing
_game) as the first argument. The second command changes to the new
project’s directory.

Look at the generated Cargo.toml file:

[package]

name = "guessing game"

version = "0.1.0"

authors = ["Your Name <you@example.com>"]
edition = "2018"

[dependencies]

If the author information that Cargo obtained from your environment
is not correct, fix that in the file and save it again.

As you saw in Chapter 1, cargo new generates a “Hello, world!” program
for you. Check out the sr¢/main.rs file:

fn main() {
println!("Hello, world!");
}

Now let’s compile this “Hello, world!” program and run it in the same
step using the cargo run command:

$ cargo run
Compiling guessing game v0.1.0 (file:///projects/guessing_game)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/guessing_game’
Hello, world!

The run command comes in handy when you need to rapidly iterate on a
project, as we’ll do in this game, quickly testing each iteration before moving
on to the next one.

Reopen the src/main.rs file. You’ll be writing all the code in this file.

Processing a Guess

14 Chapter 2

The first part of the guessing game program will ask for user input, process
that input, and check that the input is in the expected form. To start, we’ll
allow the player to input a guess. Enter the code in Listing 2-1 into src/main.vs.

src/main.rs

use std::io;

fn main() {
println!("Guess the number!");

println!("Please input your guess.");
let mut guess = String::new();

io::stdin().read line(&mut guess)
.expect("Failed to read line");

println!("You guessed: {}", guess);

}

Listing 2-1: Code that gets a guess from the user and prints it

This code contains a lot of information, so let’s go over it line by line.
To obtain user input and then print the result as output, we need to bring
the io (input/output) library into scope. The io library comes from the
standard library (which is known as std):

use std::io;

By default, Rust brings only a few types into the scope of every program
in the prelude. If a type you want to use isn’t in the prelude, you have to bring
that type into scope explicitly with a use statement. Using the std: :io library
provides you with a number of useful features, including the ability to accept
user input.

As you saw in Chapter 1, the main function is the entry point into the
program:

fn main() {

The n syntax declares a new function, the parentheses, (), indicate there
are no parameters, and the curly bracket, {, starts the body of the function.

As you also learned in Chapter 1, println! is a macro that prints a string
to the screen:

println!("Guess the number!");

println!("Please input your guess.");

This code is printing a prompt stating what the game is and requesting
input from the user.

Storing Valves with Variables

Next, we’ll create a place to store the user input, like this:

let mut guess = String::new();

Programming a Guessing Game 15

16

NOTE

Chapter 2

Now the program is getting interesting! There’s a lot going on in this
little line. Notice that this is a let statement, which is used to create a variable.
Here’s another example:

let foo = bar;

This line creates a new variable named foo and binds it to the value of
the bar variable. In Rust, variables are immutable by default. We’ll discuss
this concept in detail in “Variables and Mutability” on page 32. The fol-
lowing example shows how to use mut before the variable name to make a
variable mutable:

let foo = 5; // immutable
let mut bar = 5; // mutable

The // syntax starts a comment that continues until the end of the line. Rust ignores
everything in comments, which are discussed in more detail in Chapter 3.

Let’s return to the guessing game program. You now know that let mut
guess will introduce a mutable variable named guess. On the other side of
the equal sign (=) is the value that guess is bound to, which is the result of
calling String: :new, a function that returns a new instance of a String. String
is a string type provided by the standard library that is a growable, UTF-8
encoded bit of text.

The :: syntax in the ::new line indicates that new is an associated function
of the String type. An associated function is implemented on a type, in this
case String, rather than on a particular instance of a String. Some languages
call this a static method.

This new function creates a new, empty string. You’ll find a new function
on many types, because it’s a common name for a function that makes a
new value of some kind.

To summarize, the let mut guess = String::new(); line has created a
mutable variable that is currently bound to a new, empty instance of a
String. Whew!

Recall that we included the input/output functionality from the stan-
dard library with use std::io; on the first line of the program. Now we’ll
call the stdin function from the io module:

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

If we hadn’t listed the use std::io line at the beginning of the program,
we could have written this function call as std::io::stdin. The stdin function
returns an instance of std::io::Stdin, which is a type that represents a handle
to the standard input for your terminal.

The next part of the code, .read_line(8mut guess), calls the read_line
method on the standard input handle to get input from the user. We’re
also passing one argument to read_line: 8mut guess.

The job of read_line is to take whatever the user types into standard
input and place that into a string, so it takes that string as an argument.
The string argument needs to be mutable so the method can change the
string’s content by adding the user input.

The & indicates that this argument is a reference, which gives you a way to
let multiple parts of your code access one piece of data without needing to
copy that data into memory multiple times. References are a complex fea-
ture, and one of Rust’s major advantages is how safe and easy it is to use ref-
erences. You don’t need to know a lot of those details to finish this program.
For now, all you need to know is that like variables, references are immu-
table by default. Hence, you need to write 8mut guess rather than 8guess to
make it mutable. (Chapter 4 will explain references more thoroughly.)

Handling Potential Failure with the Result Type

We’re not quite done with this line of code. Although what we’ve discussed
so far is a single line of text, it’s only the first part of the single logical line of
code. The second part is this method:

.expect("Failed to read line");

When you call a method with the .foo() syntax, it’s often wise to intro-
duce a newline and other whitespace to help break up long lines. We could
have written this code as:

io::stdin().read_line(&mut guess).expect("Failed to read line");

However, one long line is difficult to read, so it’s best to divide it: two
lines for two method calls. Now let’s discuss what this line does.

As mentioned earlier, read_line puts what the user types into the string
we’re passing it, but it also returns a value—in this case, an io::Result. Rust
has a number of types named Result in its standard library: a generic Result
as well as specific versions for submodules, such as io::Result.

The Result types are enumerations, often referred to as enums. An
enumeration is a type that can have a fixed set of values, and those values
are called the enum’s variants. Chapter 6 will cover enums in more detail.

For Result, the variants are Ok or Err. The 0Ok variant indicates the opera-
tion was successful, and inside 0Ok is the successfully generated value. The
Err variant means the operation failed, and Err contains information about
how or why the operation failed.

The purpose of these Result types is to encode error-handling informa-
tion. Values of the Result type, like values of any type, have methods defined
on them. An instance of io::Result has an expect method that you can call.
If this instance of io::Result is an Err value, expect will cause the program to
crash and display the message that you passed as an argument to expect. If
the read_line method returns an Err, it would likely be the result of an error
coming from the underlying operating system. If this instance of io::Result

Programming a Guessing Game 17

18

Chapter 2

is an Ok value, expect will take the return value that 0k is holding and return
just that value to you so you can use it. In this case, that value is the number
of bytes in what the user entered into standard input.

If you don’t call expect, the program will compile, but you’ll get a warning:

$ cargo build
Compiling guessing game v0.1.0 (file:///projects/guessing game)
warning: unused “std::result::Result’ which must be used
--> src/main.rs:10:5
|

10 | io::stdin().read line(&mut guess);

| ANNANNNNNANNNNNNNANNNNANNNANNNNNNNANNN

|
= note: #[warn(unused must_use)] on by default

Rust warns that you haven’t used the Result value returned from
read_line, indicating that the program hasn’t handled a possible error.

The right way to suppress the warning is to actually write error handling,
but because you just want to crash this program when a problem occurs, you
can use expect. You'll learn about recovering from errors in Chapter 9.

Printing Valves with printin! Placeholders

Aside from the closing curly brackets, there’s only one more line to discuss
in the code added so far, which is the following:

println!("You guessed: {}", guess);

This line prints the string we saved the user’s input in. The set of curly
brackets, {}, is a placeholder: think of {} as little crab pincers that hold a
value in place. You can print more than one value using curly brackets: the
first set of curly brackets holds the first value listed after the format string,
the second set holds the second value, and so on. Printing multiple values
in one call to println! would look like this:

let x
let y

5;
10;

println!("x = {} and y = {}", x, y);

This code would printx = 5 and y = 10.

Testing the First Part

Let’s test the first part of the guessing game. Run it using cargo run:

$ cargo run
Compiling guessing game v0.1.0 (file:///projects/guessing game)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/guessing_game’
Guess the number!

Please input your guess.
6
You guessed: 6

At this point, the first part of the game is done: we're getting input
from the keyboard and then printing it.

Generating a Secret Number

Cargo.toml

Next, we need to generate a secret number that the user will try to guess.
The secret number should be different every time so the game is fun to
play more than once. Let’s use a random number between 1 and 100 so
the game isn’t too difficult. Rust doesn’t yet include random number func-
tionality in its standard library. However, the Rust team does provide a rand
crate at https://crates.io/crates/rand/.

Using a Crate to Get More Functionality

Remember that a crate is a collection of Rust source code files. The project
we’ve been building is a binary crate, which is an executable. The rand crate is
a library crate, which contains code intended to be used in other programs.

Cargo’s use of external crates is where it really shines. Before we can
write code that uses rand, we need to modify the Cargo.tomlfile to include
the rand crate as a dependency. Open that file now and add the following
line to the bottom beneath the [dependencies] section header that Cargo
created for you:

[dependencies]

rand = "0.3.14"

In the Cargo.toml file, everything that follows a header is part of a section
that continues until another section starts. The [dependencies] section is where
you tell Cargo which external crates your project depends on and which ver-
sions of those crates you require. In this case, we’ll specify the rand crate with
the semantic version specifier 0.3.14. Cargo understands Semantic Versioning
(sometimes called SemVer), which is a standard for writing version numbers.
The number 0.3.14 is actually shorthand for *0.3.14, which means “any ver-
sion that has a public API compatible with version 0.3.14.”

Now, without changing any of the code, let’s build the project, as shown
in Listing 2-2.

$ cargo build

Updating registry “https://github.com/rust-lang/crates.io-index’
Downloading rand v0.3.14
Downloading libc v0.2.14

Compiling libc v0.2.14

Compiling rand v0.3.14

Programming a Guessing Game 19

https://crates.io/crates/rand
https://github.com/rust-lang/crates.io-index

20

Chapter 2

Compiling guessing game v0.1.0 (file:///projects/guessing_game)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs

Listing 2-2: The output from running cargo build after adding the rand crate as a
dependency

You may see different version numbers (but they will all be compatible
with the code, thanks to SemVer!), and the lines may be in a different order.

Now that we have an external dependency, Cargo fetches the latest ver-
sions of everything from the registry, which is a copy of data from https://
crates.io/. Crates.io is where people in the Rust ecosystem post their open
source Rust projects for others to use.

After updating the registry, Cargo checks the [dependencies] section
and downloads any crates you don’t have yet. In this case, although we only
listed rand as a dependency, Cargo also grabbed a copy of libc, because rand
depends on 1libc to work. After downloading the crates, Rust compiles them
and then compiles the project with the dependencies available.

If you immediately run cargo build again without making any changes,
you won’t get any output aside from the Finished line. Cargo knows it has
already downloaded and compiled the dependencies, and you haven’t
changed anything about them in your Cargo.toml file. Cargo also knows that
you haven’t changed anything about your code, so it doesn’t recompile that
either. With nothing to do, it simply exits.

If you open the sr¢/main.rs file, make a trivial change, and then save it
and build again, you’ll only see two lines of output:

$ cargo build
Compiling guessing game v0.1.0 (file:///projects/guessing game)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs

These lines show Cargo only updates the build with your tiny change
to the sr¢/main.rs file. Your dependencies haven’t changed, so Cargo knows
it can reuse what it has already downloaded and compiled for those. It just
rebuilds your part of the code.

Ensuring Reproducible Builds with the Cargo.lock File

Cargo has a mechanism that ensures you can rebuild the same artifact
every time you or anyone else builds your code: Cargo will use only the ver-
sions of the dependencies you specified until you indicate otherwise. For
example, what happens if next week version 0.3.15 of the rand crate comes
out and contains an important bug fix but also contains a regression that
will break your code?

The answer to this problem is the Cargo.lock file, which was created the
first time you ran cargo build and is now in your guessing_game directory.
When you build a project for the first time, Cargo figures out all the ver-
sions of the dependencies that fit the criteria and then writes them to the
Cargo.lock file. When you build your project in the future, Cargo will see
that the Cargo.lock file exists and use the versions specified there rather

https://crates.io/
https://crates.io/

Cargo.toml

than doing all the work of figuring out versions again. This lets you have a
reproducible build automatically. In other words, your project will remain
at 0.3.14 until you explicitly upgrade, thanks to the Cargo.lock file.

Updating a Crate to Get a New Version

When you do want to update a crate, Cargo provides another command,
update, which will ignore the Cargo.lock file and figure out all the latest ver-
sions that fit your specifications in Cargo.toml. If that works, Cargo will write
those versions to the Cargo.lock file.

But by default, Cargo will only look for versions greater than 0.3.0 and
less than 0.4.0. If the rand crate has released two new versions, 0.3.15 and
0.4.0, you would see the following if you ran cargo update:

$ cargo update
Updating registry “https://github.com/rust-lang/crates.io-index’
Updating rand v0.3.14 -> v0.3.15

At this point, you would also notice a change in your Cargo.lock file noting
that the version of the rand crate you are now using is 0.3.15.

If you wanted to use rand version 0.4.0 or any version in the 0.4.x series,
you’d have to update the Cargo.toml file to look like this instead:

[dependencies]

rand = "0.4.0"

The next time you run cargo build, Cargo will update the registry of
crates available and reevaluate your rand requirements according to the
new version you have specified.

There’s a lot more to say about Cargo and its ecosystem which we’ll dis-
cuss in Chapter 14, but for now, that’s all you need to know. Cargo makes it
very easy to reuse libraries, so Rustaceans are able to write smaller projects
that are assembled from a number of packages.

Generating a Random Number

Now that you've added the rand crate to Cargo.toml, let’s start using rand. The
next step is to update src/main.rs, as shown in Listing 2-3.

® use rand::Rng;

® let secret_number = rand::thread rng().gen_range(1, 101);

println!("The secret number is: {}", secret number);

Programming a Guessing Game 21

https://github.com/rust-lang/crates.io-index

22

Chapter 2

Listing 2-3: Adding code to generate a random number

First, we add a use line: use rand::Rng @. The Rng trait defines methods
that random number generators implement, and this trait must be in scope
for us to use those methods. Chapter 10 will cover traits in detail.

Next, we’re adding two more lines in the middle @. The rand: : thread rng
function will give us the particular random number generator that we're
going to use: one that is local to the current thread of execution and seeded
by the operating system. Then we call the gen_range method on the random
number generator. This method is defined by the Rng trait that we brought
into scope with the use rand::Rng statement. The gen_range method takes two
numbers as arguments and generates a random number between them. It’s
inclusive on the lower bound but exclusive on the upper bound, so we need
to specify 1 and 101 to request a number between 1 and 100.

You won’t just know which traits to use and which functions and methods to call
Jfrom a crate. Instructions for using a crate are in each crate’s documentation.
Another neat feature of Cargo is that you can run the cargo doc --open command,
which will build documentation provided by all of your dependencies locally and
open it in your browser. If you’re interested in other functionality in the rand crate,
for example, run cargo doc --open and click rand in the sidebar on the left.

The second line that we added to the middle of the code prints the
secret number. This is useful while we’re developing the program to be able
to test it, but we’ll delete it from the final version. It’s not much of a game if
the program prints the answer as soon as it starts!

Try running the program a few times:

$ cargo run
Compiling guessing game v0.1.0 (file:///projects/guessing_game)

Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/guessing_game’

Guess the number!

The secret number is: 7

Please input your guess.

4

You guessed: 4

$ cargo run
Running "target/debug/guessing_game’

Guess the number!

The secret number is: 83

Please input your guess.

5
You guessed: 5

You should get different random numbers, and they should all be num-
bers between 1 and 100. Great job!

Comparing the Guess to the Secret Number

src/main.rs

Now that we have user input and a random number, we can compare them.
That step is shown in Listing 2-4. Note that this code won’t compile quite
yet, as we will explain.

use std::cmp::0rdering;

match® guess.cmp(&secret number)® {
Ordering::Less => println!("Too smalll"),
Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),

Listing 2-4: Handling the possible return values of comparing two numbers

The first new bit here is another use statement @, bringing a type called
std::cmp::0rdering into scope from the standard library. Like Result, Ordering
is another enum, but the variants for Ordering are Less, Greater, and Equal.
These are the three outcomes that are possible when you compare two
values.

Then we add five new lines at the bottom that use the Ordering type. The
cmp method © compares two values and can be called on anything that can
be compared. It takes a reference to whatever you want to compare with: here
it’s comparing the guess to the secret_number. Then it returns a variant of the
Ordering enum we brought into scope with the use statement. We use a match
expression @ to decide what to do next based on which variant of Ordering
was returned from the call to cmp with the values in guess and secret_number.

A match expression is made up of arms. An arm consists of a pattern
and the code that should be run if the value given to the beginning of
the match expression fits that arm’s pattern. Rust takes the value given to
match and looks through each arm’s pattern in turn. The match construct
and patterns are powerful features in Rust that let you express a variety

Programming a Guessing Game 23

src/main.rs

2

Chapter 2

of situations your code might encounter and make sure that you handle
them all. These features will be covered in detail in Chapter 6 and
Chapter 18, respectively.

Let’s walk through an example of what would happen with the match
expression used here. Say that the user has guessed 50 and the randomly
generated secret number this time is 38. When the code compares 50 to 38,
the cmp method will return Ordering: :Greater, because 50 is greater than 38.
The match expression gets the Ordering: :Greater value and starts checking
each arm’s pattern. It looks at the first arm’s pattern, Ordering: :Less, and sees
that the value Ordering: :Greater does not match Ordering: :Less, so it ignores
the code in that arm and moves to the next arm. The next arm’s pattern,
Ordering: :Greater, does match Ordering::Greater! The associated code in that
arm will execute and print Too big! to the screen. The match expression ends
because it has no need to look at the last arm in this scenario.

However, the code in Listing 2-4 won’t compile yet. Let’s try it:

$ cargo build
Compiling guessing game v0.1.0 (file:///projects/guessing game)
error[E0308]: mismatched types
--> src/main.rs:23:21
|
23 | match guess.cmp(&secret number) {
| ananannnnnnnnn expected struct “std::string::String’,
found integral variable
|
= note: expected type “&std::string::String’
= note: found type “&{integer}"

error: aborting due to previous error
Could not compile “guessing game’.

The core of the error states that there are mismatched types. Rust has
a strong, static type system. However, it also has type inference. When we
wrote let mut guess = String::new(), Rust was able to infer that guess should
be a String and didn’t make us write the type. The secret_number, on the other
hand, is a number type. A few number types can have a value between 1 and
100: 132, a 32-bit number; u32, an unsigned 32-bit number; i64, a 64-bit num-
ber; as well as others. Rust defaults to an 132, which is the type of secret_number
unless you add type information elsewhere that would cause Rust to infer a
different numerical type. The reason for the error here is that Rust cannot
compare a string and a number type.

Ultimately, we want to convert the String the program reads as input
into a real number type so we can compare it numerically to the secret
number. We can do that by adding the following two lines to the main
function body:

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

We create a variable named guess. But wait, doesn’t the program
already have a variable named guess? It does, but Rust allows us to shadow
the previous value of guess with a new one. This feature is often used in
situations in which you want to convert a value from one type to another
type. Shadowing lets us reuse the guess variable name rather than forcing
us to create two unique variables, such as guess_str and guess for example.
(Chapter 3 covers shadowing in more detail.)

We bind guess to the expression guess.trim().parse(). The guess in the
expression refers to the original guess that was a String with the input in it.
The trim method on a String instance will eliminate any whitespace at the
beginning and end. Although u32 can contain only numerical characters,
the user must press ENTER to satisfy read_line. When the user presses ENTER,
anewline character is added to the string. For example, if the user types 5
and presses ENTER, guess looks like this: 5\n. The \n represents “newline,” the
result of pressing ENTER. The trim method eliminates \n, resulting in just 5.

The parse method on strings parses a string into some kind of number.
Because this method can parse a variety of number types, we need to tell
Rust the exact number type we want by using let guess: u32. The colon (:)
after guess tells Rust we’ll annotate the variable’s type. Rust has a few built-
in number types; the u32 seen here is an unsigned, 32-bit integer. It’s a good
default choice for a small positive number. You’ll learn about other number
types in Chapter 3. Additionally, the u32 annotation in this example pro-
gram and the comparison with secret_number mean that Rust will infer that
secret_number should be a u32 type as well. So now the comparison will be
between two values of the same type!

The call to parse could easily cause an error. If, for example, the string
contained A¢%, there would be no way to convert that to a number. Because
it might fail, the parse method returns a Result type, much as the read_line
method does (discussed in “Handling Potential Failure with the Result
Type” on page 17). We’ll treat this Result the same way by using the expect
method again. If parse returns an Err Result variant because it couldn’t cre-
ate a number from the string, the expect call will crash the game and print
the message we give it. If parse can successfully convert the string to a num-
ber, it will return the 0k variant of Result, and expect will return the number
that we want from the 0k value.

Programming a Guessing Game 25

Let’s run the program now!

$ cargo run
Compiling guessing game v0.1.0 (file:///projects/guessing game)
Finished dev[unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/guessing_game’
Guess the number!
The secret number is: 58
Please input your guess.
76
You guessed: 76
Too big!

Nice! Even though spaces were added before the guess, the program still
figured out that the user guessed 76. Run the program a few times to verify
the different behavior with different kinds of input: guess the number cor-
rectly, guess a number that is too high, and guess a number that is too low.

We have most of the game working now, but the user can make only
one guess. Let’s change that by adding a loop!

Allowing Multiple Guesses with Looping

src/main.rs

26

Chapter 2

The loop keyword creates an infinite loop. We’ll add that now to give users
more chances at guessing the number:

loop {

As you can see, we’ve moved everything into a loop from the guess input
prompt onward. Be sure to indent the lines inside the loop another four
spaces each and run the program again. Notice that there is a new problem
because the program is doing exactly what we told it to do: ask for another
guess forever! It doesn’t seem like the user can quit!

The user could always interrupt the program by using the keyboard
shortcut CTRL-C. But there’s another way to escape this insatiable monster,
as mentioned in the parse discussion in “Comparing the Guess to the Secret

src/main.rs

Number” on page 23: if the user enters a non-number answer, the pro-
gram will crash. The user can take advantage of that in order to quit, as
shown here:

$ cargo run
Compiling guessing game v0.1.0 (file:///projects/guessing game)

Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running " target/debug/guessing_game’

Guess the number!

The secret number is: 59

Please input your guess.

45

You guessed: 45

Too small!

Please input your guess.

60

You guessed: 60

Too big!

Please input your guess.

59

You guessed: 59

You win!

Please input your guess.

quit

thread 'main' panicked at 'Please type a number!: ParseIntError { kind:

InvalidDigit }', src/libcore/result.rs:785

note: Run with “RUST_BACKTRACE=1" for a backtrace.

Typing quit actually quits the game, but so will any other non-number
input. However, this is suboptimal to say the least. We want the game to
automatically stop when the correct number is guessed.

Quitting After a Correct Guess

Let’s program the game to quit when the user wins by adding a break
statement:

Ordering::Equal => {
println!("You win!");
break;

Adding the break line after You win! makes the program exit the loop
when the user guesses the secret number correctly. Exiting the loop also
means exiting the program, because the loop is the last part of main.

Programming a Guessing Game 27

src/main.rs

28

Chapter 2

Handling Invalid Input

To further refine the game’s behavior, rather than crashing the program
when the user inputs a non-number, let’s make the game ignore a non-
number so the user can continue guessing. We can do that by altering the
line where guess is converted from a String to a u32, as shown in Listing 2-5.

match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

};

Listing 2-5: Ignoring a non-number guess and asking for another guess instead of crash-
ing the program

Switching from an expect call to a match expression is how you generally
move from crashing on an error to handling the error. Remember that parse
returns a Result type and Result is an enum that has the variants Ok or Err.
We’re using a match expression here, as we did with the Ordering result of the
cmp method.

If parse is able to successfully turn the string into a number, it will
return an Ok value that contains the resulting number. That 0k value will
match the first arm’s pattern, and the match expression will just return the
num value that parse produced and put inside the 0k value. That number will
end up right where we want it in the new guess variable we’re creating.

If parse is not able to turn the string into a number, it will return an Err
value that contains more information about the error. The Err value does
not match the Ok(num) pattern in the first match arm, but it does match the
Err(_) pattern in the second arm. The underscore, _, is a catchall value; in
this example, we’re saying we want to match all Err values, no matter what
information they have inside them. So the program will execute the second
arm’s code, continue, which tells the program to go to the next iteration of
the loop and ask for another guess. So, effectively, the program ignores all
errors that parse might encounter!

Now everything in the program should work as expected. Let’s try it:

$ cargo run
Compiling guessing game v0.1.0 (file:///projects/guessing_game)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/guessing game’
Guess the number!
The secret number is: 61
Please input your guess.

src/main.rs

10
You guessed: 10

Too small!

Please input your guess.
99

You guessed: 99

Too big!

Please input your guess.
foo

Please input your guess.
61

You guessed: 61

You win!

Awesome! With one tiny final tweak, we will finish the guessing game.
Recall that the program is still printing the secret number. That worked

well for testing, but it ruins the game. Let’s delete the println! that outputs
the secret number. Listing 2-6 shows the final code.

use std::io;
use std::cmp::0rdering;
use rand::Rng;

fn main() {
println!("Guess the

let secret_number =

loop {

number!");

rand: :thread_rng().gen_range(1, 101);

println!("Please input your guess.");

let mut guess =

String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

let guess: u32

match guess.trim().parse() {

Ok(num) => num,
Err(_) => continue,

)

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering::Equal => {
println!("You win!");

break;

}

Listing 2-6: Complete guessing game code

Programming a Guessing Game

29

30

Summary

Chapter 2

At this point, you've successfully built the guessing game. Congratulations!

This project was a hands-on way to introduce you to many new Rust
concepts: let, match, methods, associated functions, the use of external
crates, and more. In the next few chapters, you’ll learn about these concepts
in more detail. Chapter 3 covers concepts that most programming languages
have, such as variables, data types, and functions, and shows how to use them
in Rust. Chapter 4 explores ownership, a feature that makes Rust different
from other languages. Chapter 5 discusses structs and method syntax, and
Chapter 6 explains how enums work.

COMMON PROGRAMMING
CONCEPTS

This chapter covers concepts that appear in
almost every programming language and
how they work in Rust. Many programming
languages have much in common at their core.
None of the concepts presented in this chapter are
unique to Rust, but we’ll discuss them in the context
of Rust and explain the conventions around using

these concepts.

Specifically, you’ll learn about variables, basic types, functions, com-
ments, and control flow. These foundations will be in every Rust program,
and learning them early will give you a strong core to start from.

KEYWORDS

The Rust language has a set of keywords that are reserved for use by the lan-
guage only, much as in other languages. Keep in mind that you cannot use
these words as names of variables or functions. Most of the keywords have
special meanings, and you'll be using them to do various tasks in your Rust
programs; a few have no current functionality associated with them but have
been reserved for functionality that might be added to Rust in the future. You
can find a list of the keywords in Appendix A.

Variables and Mutability

src/main.rs

32

Chapter 3

As mentioned in Chapter 2, by default variables are immutable. This is
one of many nudges Rust gives you to write your code in a way that takes
advantage of the safety and easy concurrency that Rust offers. However,
you still have the option to make your variables mutable. Let’s explore how
and why Rust encourages you to favor immutability and why sometimes you
might want to opt out.

When a variable is immutable, once a value is bound to a name, you
can’t change that value. To illustrate this, let’s generate a new project
called variables in your projects directory by using cargo new variables.

Then, in your new variables directory, open sr¢/main.rs and replace its
code with the following code that won’t compile just yet:

fn main() {
let x = 5;
println!("The value of x is: {}", x);
X = 6;
println!("The value of x is: {}", x);

Save and run the program using cargo run. You should receive an error
message, as shown in this output:

error[E0384]: cannot assign twice to immutable variable “x°
--> src/main.rs:4:5
|
| let x = 5;
| - first assignment to “x°
3| println!("The value of x is: {}", x);
4 | X = 6;
| AN cannot assign twice to immutable variable

N

This example shows how the compiler helps you find errors in your
programs. Even though compiler errors can be frustrating, they only mean

src/main.rs

your program isn’t safely doing what you want it to do yet; they do not
mean that you're not a good programmer! Experienced Rustaceans still
get compiler errors.

The error message indicates that the cause of the error is that you
cannot assign twice to immutable variable x, because you tried to assign a
second value to the immutable x variable.

It’s important that we get compile-time errors when we attempt to change
a value that we previously designated as immutable because this very situation
can lead to bugs. If one part of our code operates on the assumption that a
value will never change and another part of our code changes that value, it’s
possible that the first part of the code won’t do what it was designed to do.
The cause of this kind of bug can be difficult to track down after the fact,
especially when the second piece of code changes the value only sometimes.

In Rust, the compiler guarantees that when you state that a value won’t
change, it really won’t change. That means that when you’re reading and
writing code, you don’t have to keep track of how and where a value might
change. Your code is thus easier to reason through.

But mutability can be very useful. Variables are immutable only by
default; as you did in Chapter 2, you can make them mutable by adding
mut in front of the variable name. In addition to allowing this value to
change, mut conveys intent to future readers of the code by indicating
that other parts of the code will be changing this variable value.

For example, let’s change src/main.rs to the following:

let mut x = 5;

When we run the program now, we get this:

$ cargo run
Compiling variables v0.1.0 (file:///projects/variables)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running °target/debug/variables”
The value of x is: 5
The value of x is: 6

We’re allowed to change the value that x binds to from 5 to 6 when mut is
used. In some cases, you’ll want to make a variable mutable because it makes
the code more convenient to write than if it had only immutable variables.

There are multiple trade-offs to consider in addition to the prevention
of bugs. For example, in cases where you're using large data structures,
mutating an instance in place may be faster than copying and returning
newly allocated instances. With smaller data structures, creating new
instances and writing in a more functional programming style may be
easier to think through, so lower performance might be a worthwhile
penalty for gaining that clarity.

Common Programming Concepts 33

src/main.rs

34

Chapter 3

Differences Between Variables and Constants

Being unable to change the value of a variable might have reminded you of
another programming concept that most other languages have: constants.
Like immutable variables, constants are values that are bound to a name and
are not allowed to change, but there are a few differences between constants
and variables.

First, you aren’t allowed to use mut with constants. Constants aren’t just
immutable by default—they’re always immutable.

You declare constants using the const keyword instead of the let keyword,
and the type of the value must be annotated. We're about to cover types and
type annotations in “Data Types” on page 36, so don’t worry about the
details right now. Just know that you must always annotate the type.

Constants can be declared in any scope, including the global scope,
which makes them useful for values that many parts of the code need to
know about.

The last difference is that constants may be set only to a constant expres-
sion, not to the result of a function call or any other value that could only be
computed at runtime.

Here’s an example of a constant declaration where the constant’s name
is MAX_POINTS and its value is set to 100,000. (Rust’s naming convention for
constants is to use all uppercase with underscores between words, and
underscores can be inserted in numeric literals to improve readability):

const MAX_POINTS: u32 = 100 _000;

Constants are valid for the entire time a program runs, within the
scope they were declared in, making them a useful choice for values in
your application domain that multiple parts of the program might need
to know about, such as the maximum number of points any player of a
game is allowed to earn or the speed of light.

Naming hardcoded values used throughout your program as constants
is useful in conveying the meaning of that value to future maintainers of
the code. It also helps to have only one place in your code you would need
to change if the hardcoded value needed to be updated in the future.

Shadowing

As you saw in the guessing game tutorial in “Comparing the Guess to the
Secret Number” on page 23, you can declare a new variable with the same
name as a previous variable, and the new variable shadows the previous vari-
able. Rustaceans say that the first variable is shadowed by the second, which
means that the second variable’s value is what appears when the variable

is used. We can shadow a variable by using the same variable’s name and
repeating the use of the let keyword as follows:

fn main() {

let x = 5;

let x

X + 1;

let x

X * 2;

println!("The value of x is: {}", x);

This program first binds x to a value of 5. Then it shadows x by repeating
let x =, taking the original value and adding 1 so the value of x is then 6. The
third let statement also shadows x, multiplying the previous value by 2 to give
x a final value of 12. When we run this program, it will output the following:

$ cargo run
Compiling variables v0.1.0 (file:///projects/variables)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/variables”
The value of x is: 12

Shadowing is different from marking a variable as mut, because we’ll get
a compile-time error if we accidentally try to reassign to this variable without
using the let keyword. By using let, we can perform a few transformations on
a value but have the variable be immutable after those transformations have
been completed.

The other difference between mut and shadowing is that because we’re
effectively creating a new variable when we use the let keyword again, we
can change the type of the value but reuse the same name. For example, say
our program asks a user to show how many spaces they want between some
text by inputting space characters, but we really want to store that input as a
number:

let spaces
let spaces

spaces.len();

This construct is allowed because the first spaces variable is a string type
and the second spaces variable, which is a brand-new variable that happens
to have the same name as the first one, is a number type. Shadowing thus
spares us from having to come up with different names, such as spaces_str
and spaces_num; instead, we can reuse the simpler spaces name. However, if
we try to use mut for this, as shown here, we’ll get a compile-time error:

let mut spaces = H
spaces = spaces.len();

The error says we’re not allowed to mutate a variable’s type:

error[E0308]: mismatched types
--> src/main.rs:3:14

|
spaces = spaces.len();

3]
| annnannnnnnn expected &str, found usize

Common Programming Concepts 35

36

= note: expected type “&str’
found type “usize’

Now that we’ve explored how variables work, let’s look at more data
types they can have.

Data Types

Chapter 3

Every value in Rust is of a certain data type, which tells Rust what kind of
data is being specified so it knows how to work with that data. We’ll look at
two data type subsets: scalar and compound.

Keep in mind that Rust is a statically typed language, which means
that it must know the types of all variables at compile time. The compiler
can usually infer what type we want to use based on the value and how we
use it. In cases when many types are possible, such as when we converted a
String to a numeric type using parse in “Comparing the Guess to the Secret
Number” on page 23, we must add a type annotation, like this:

let guess: u32 = "42".parse().expect("Not a number!");

If we don’t add the type annotation here, Rust will display the following
error, which means the compiler needs more information from us to know
which type we want to use:

error[E0282]: type annotations needed
--> src/main.rs:2:9

|
2 | let guess = "42".parse().expect("Not a number!");

| AANANAA

| I

| cannot infer type for ~ °

| consider giving “guess™ a type

You’ll see different type annotations for other data types.

Scalar Types

A scalar type represents a single value. Rust has four primary scalar types:
integers, floating-point numbers, Booleans, and characters. You may recog-
nize these from other programming languages. Let’s jump into how they
work in Rust.

Integer Types

An integeris a number without a fractional component. We used one integer
type in Chapter 2, the u32 type. This type declaration indicates that the value
it’s associated with should be an unsigned integer (signed integer types start

with i, instead of u) that takes up 32 bits of space. Table 3-1 shows the built-in
integer types in Rust. Each variant in the Signed and Unsigned columns (for
example, i16) can be used to declare the type of an integer value.

Table 3-1: Integer Types in Rust

Length Signed Unsigned

8-bit i8 u8
16-bit i16 u16
32-bit i32 u32
64-bit i64 u64
128-bit i128 u128
arch isize usize

Each variant can be either signed or unsigned and has an explicit
size. Signed and unsigned refer to whether it’s possible for the number to be
negative or positive—in other words, whether the number needs to have a
sign with it (signed) or whether it will only ever be positive and can therefore
be represented without a sign (unsigned). It’s like writing numbers on paper:
when the sign matters, a number is shown with a plus sign or a minus sign;
however, when it’s safe to assume the number is positive, it’s shown with no
sign. Signed numbers are stored using two’s complement representation (if
you’re unsure what this is, you can search for it online; an explanation is
outside the scope of this book).

Each signed variant can store numbers from —(2" ") to 2"~ = 1 inclu-
sive, where 7 is the number of bits that variant uses. So an i8 can store num-
bers from —(27) to 2" - 1, which equals —-128 to 127. Unsigned variants can
store numbers from 0 to 2" — 1, so a u8 can store numbers from 0 to 9% 1,
which equals 0 to 255.

Additionally, the isize and usize types depend on the kind of computer
your program is running on: 64 bits if you’re on a 64-bit architecture and
32 bits if you’re on a 32-bit architecture.

You can write integer literals in any of the forms shown in Table 3-2. Note
that all number literals except the byte literal allow a type suffix, such as 57u8,
and _ as a visual separator, such as 1_000.

Table 3-2: Integer Literals in Rust

Number literals ~ Example

Decimal 98 222

Hex oxff

Octal 0077

Binary 0b1111_0000
Byte (u8 only) b'A'

Common Programming Concepts 37

src/main.rs

38 Chapter 3

So how do you know which type of integer to use? If you're unsure, Rust’s
defaults are generally good choices, and integer types default to i32: this type
is generally the fastest, even on 64-bit systems. The primary situation in which
you'd use isize or usize is when indexing some sort of collection.

()

INTEGER OVERFLOW

Let's say you have a variable of type u8 that can hold values between 0 and
255. If you try to change the variable to a value outside of that range, such
as 256, integer overflow will occur. Rust has some interesting rules involving
this behavior. When you're compiling in debug mode, Rust includes checks
for integer overflow that cause your program to panic at runtime if this behav-
ior occurs. Rust uses the term panicking when a program exits with an error;
we'll discuss panics in more depth in “Unrecoverable Errors with panic!” on
page 152.

When you're compiling in release mode with the --release flag, Rust does
not include checks for integer overflow that cause panics. Instead, if overflow
occurs, Rust performs two’s complement wrapping. In short, values greater than
the maximum value the type can hold “wrap around” to the minimum of the
values the type can hold. In the case of a u, 256 becomes 0, 257 becomes 1,
and so on. The program won't panic, but the variable will have a value that
probably isnt what you were expecting it o have. Relying on integer overflow’s
wrapping behavior is considered an error. If you want to wrap explicitly, you
can use the standard library type Wrapping.

Floating-Point Types

Rust also has two primitive types for floating-point numbers, which are
numbers with decimal points. Rust’s floating-point types are £32 and 64,
which are 32 bits and 64 bits in size, respectively. The default type is f64
because on modern CPUs it’s roughly the same speed as f32 but is capable
of more precision.

Here’s an example that shows floating-point numbers in action:

fn main() {

let x = 2.0; // f64

let y: f32 = 3.0; // 32

Floating-point numbers are represented according to the IEEE-754 stan-
dard. The 32 type is a single-precision float, and f64 has double precision.

src/main.rs

src/main.rs

Numeric Operations

Rust supports the basic mathematical operations you’d expect for all of the
number types: addition, subtraction, multiplication, division, and remainder.
The following code shows how you’d use each one in a let statement:

fn main() {
// addition
let sum = 5 + 10;

// subtraction
let difference = 95.5 - 4.3;

// multiplication
let product = 4 * 30;

// division
let quotient = 56.7 / 32.2;

// remainder
let remainder = 43 % 5;

Each expression in these statements uses a mathematical operator and
evaluates to a single value, which is then bound to a variable. Appendix B
contains a list of all operators that Rust provides.

The Boolean Type

As in most other programming languages, a Boolean type in Rust has two
possible values: true and false. Booleans are one byte in size. The Boolean
type in Rust is specified using bool. For example:

fn main() {
let t = true;

let f: bool = false; // with explicit type annotation

The main way to use Boolean values is through conditionals, such as an
if expression. We’ll cover how if expressions work in Rust in “Control Flow”
on page 49.

The Character Type

So far we’ve worked only with numbers, but Rust supports letters too. Rust’s
char type is the language’s most primitive alphabetic type, and the follow-
ing code shows one way to use it. (Note that char literals are specified with
single quotes, as opposed to string literals, which use double quotes.)

Common Programming Concepts 39

src/main.rs

src/main.rs

src/main.rs

40

Chapter 3

fn main() {
let c = 'z';

let z = '2';
let heart_eyed cat =

&'

Rust’s char type is four bytes in size and represents a Unicode Scalar
Value, which means it can represent a lot more than just ASCII. Accented
letters; Chinese, Japanese, and Korean characters; emoji; and zero-width
spaces are all valid char values in Rust. Unicode Scalar Values range from
U+0000 to U+D7FF and U+E000 to U+10FFFF inclusive. However, a “character” isn’t
really a concept in Unicode, so your human intuition for what a “character”
is may not match up with what a char is in Rust. We’ll discuss this topic in
detail in “Storing UTF-8 Encoded Text with Strings” on page 137.

Compound Types

Compound types can group multiple values into one type. Rust has two
primitive compound types: tuples and arrays.

The Tuple Type

A tuple is a general way of grouping together some number of other values
with a variety of types into one compound type. Tuples have a fixed length:
once declared, they cannot grow or shrink in size.

We create a tuple by writing a comma-separated list of values inside
parentheses. Each position in the tuple has a type, and the types of the dif-
ferent values in the tuple don’t have to be the same. We’ve added optional
type annotations in this example:

fn main() {
let tup: (i32, f64, u8) = (500, 6.4, 1);
}

The variable tup binds to the entire tuple, because a tuple is considered
a single compound element. To get the individual values out of a tuple, we
can use pattern matching to destructure a tuple value, like this:

fn main() {
let tup = (500, 6.4, 1);

let (x, y, z) = tup;

println!("The value of y is: {}", y);

This program first creates a tuple and binds it to the variable tup. It then
uses a pattern with let to take tup and turn it into three separate variables,

src/main.rs

src/main.rs

x, y, and z. This is called destructuring, because it breaks the single tuple into
three parts. Finally, the program prints the value of y, which is 6.4.

In addition to destructuring through pattern matching, we can access
a tuple element directly by using a period (.) followed by the index of the
value we want to access. For example:

fn main() {
let x: (i32, f64, u8) = (500, 6.4, 1);

let five_hundred = x.0;
let six_point four = x.1;

let one = x.2;

This program creates a tuple, x, and then makes new variables for each
element by using their index. As with most programming languages, the
first index in a tuple is 0.

The Array Type

Another way to have a collection of multiple values is with an array. Unlike a
tuple, every element of an array must have the same type. Arrays in Rust are
different from arrays in some other languages because arrays in Rust have a
fixed length, like tuples.

In Rust, the values going into an array are written as a comma-separated
list inside square brackets:

fn main() {

let a = [1, 2, 3, 4, 5];
}

Arrays are useful when you want your data allocated on the stack rather
than the heap (we will discuss the stack and the heap more in Chapter 4)
or when you want to ensure you always have a fixed number of elements.
An array isn’t as flexible as the vector type, though. A vector is a similar
collection type provided by the standard library that ¢s allowed to grow
or shrink in size. If you'’re unsure whether to use an array or a vector, you
should probably use a vector. Chapter 8 discusses vectors in more detail.

An example of when you might want to use an array rather than a
vector is in a program that needs to know the names of the months of the
year. It’s very unlikely that such a program will need to add or remove
months, so you can use an array because you know it will always contain
12 items:

let months = ["January"”, "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"];

Common Programming Concepts 1

src/main.rs

src/main.rs

2

Chapter 3

You would write an array’s type by using square brackets, and within
the brackets include the type of each element, a semicolon, and then the
number of elements in the array, like so:

let a: [i32; 5] = [1, 2, 3, 4, 5];

Here, 132 is the type of each element. After the semicolon, the number
5 indicates the element contains five items.

Writing an array’s type this way looks similar to an alternative syntax for
initializing an array: if you want to create an array that contains the same
value for each element, you can specify the initial value, followed by a semi-
colon, and then the length of the array in square brackets, as shown here:

let a = [3; 5];

The array named a will contain 5 elements that will all be set to the
value 3 initially. This is the same as writing let a = [3, 3, 3, 3, 3]; butina
more concise way.

Accessing Array Elements

An array is a single chunk of memory allocated on the stack. You can access
elements of an array using indexing, like this:

fn main() {
let a = [1) 2, 3, 4, 5];

let first = a[o0];
let second = a[1];

In this example, the variable named first will get the value 1, because
that is the value at index [0] in the array. The variable named second will get
the value 2 from index [1] in the array.

Invalid Array Element Access

What happens if you try to access an element of an array that is past the end
of the array? Say you change the example to the following code, which will
compile but exit with an error when it runs:

fn main() {
let a = [1) 2, 3, 4, 5];
let index = 10;

let element = a[index];

println!("The value of element is: {}", element);

Running this code using cargo run produces the following result:

$ cargo run
Compiling arrays v0.1.0 (file:///projects/arrays)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/arrays”
thread '<main>' panicked at 'index out of bounds: the len is 5 but the index
is 10', src/main.rs:6
note: Run with “RUST_BACKTRACE=1" for a backtrace.

The compilation didn’t produce any errors, but the program resulted
in a runtime error and didn’t exit successfully. When you attempt to access
an element using indexing, Rust will check that the index you’ve specified
is less than the array length. If the index is greater than or equal to the
length, Rust will panic.

This is the first example of Rust’s safety principles in action. In many
low-level languages, this kind of check is not done, and when you provide an
incorrect index, invalid memory can be accessed. Rust protects you against
this kind of error by immediately exiting instead of allowing the memory
access and continuing. Chapter 9 discusses more of Rust’s error handling.

Functions

src/main.rs

Functions are pervasive in Rust code. You've already seen one of the most
important functions in the language: the main function, which is the entry
point of many programs. You've also seen the fn keyword, which allows you
to declare new functions.

Rust code uses snake case as the conventional style for function and vari-
able names. In snake case, all letters are lowercase and underscores sepa-
rate words. Here’s a program that contains an example function definition:

fn main() {
println!("Hello, world!");

another_function();

}

fn another_function() {
println!("Another function.");
}

Function definitions in Rust start with fn and have a set of parentheses
after the function name. The curly brackets tell the compiler where the
function body begins and ends.

We can call any function we’ve defined by entering its name followed
by a set of parentheses. Because another_function is defined in the program,
it can be called from inside the main function. Note that we defined another

Common Programming Concepts 43

src/main.rs

44

Chapter 3

_function after the main function in the source code; we could have defined it
before as well. Rust doesn’t care where you define your functions, only that
they’re defined somewhere.

Let’s start a new binary project named functions to explore functions
further. Place the another_function example in sr¢/main.rs and run it. You
should see the following output:

$ cargo run
Compiling functions vo0.1.0 (file:///projects/functions)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/functions”
Hello, world!
Another function.

The lines execute in the order in which they appear in the main function.
First, the “Hello, world!” message prints, and then another_function is called
and its message is printed.

Function Parameters

Functions can also be defined to have parameters, which are special variables
that are part of a function’s signature. When a function has parameters, you
can provide it with concrete values for those parameters. Technically, the
concrete values are called arguments, but in casual conversation, people
tend to use the words parameter and argument interchangeably for either the
variables in a function’s definition or the concrete values passed in when
you call a function.

The following rewritten version of another_function shows what param-
eters look like in Rust:

fn main() {
another_function(s);
}

fn another_function(x: i32) {
println!("The value of x is: {}", x);
}

Try running this program; you should get the following output:

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running " target/debug/functions”
The value of x is: 5

The declaration of another_function has one parameter named x. The
type of x is specified as i32. When 5 is passed to another_function, the println!
macro puts 5 where the pair of curly brackets were in the format string.

src/main.rs

In function signatures, you must declare the type of each parameter.
This is a deliberate decision in Rust’s design: requiring type annotations
in function definitions means the compiler almost never needs you to use
them elsewhere in the code to figure out what you mean.

When you want a function to have multiple parameters, separate the
parameter declarations with commas, like this:

fn main() {
another function(s, 6);
}

fn another_function(x: i32, y: i32) {
println!("The value of x is: {}", x);
println!("The value of y is: {}", y);

This example creates a function with two parameters, both of which
are i32 types. The function then prints the values in both of its parameters.
Note that function parameters don’t all need to be the same type; they just
happen to be in this example.

Let’s try running this code. Replace the program currently in your
Sfunctions project’s sr¢/main.rs file with the preceding example and run it
using cargo run:

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running " target/debug/functions”
The value of x is: 5
The value of y is: 6

Because we called the function with 5 as the value for x and 6 is passed
as the value for y, the two strings are printed with these values.

Statements and Expressions in Function Bodies

Function bodies are made up of a series of statements optionally ending

in an expression. So far, we’ve only covered functions without an ending
expression, but you have seen an expression as part of a statement. Because
Rust is an expression-based language, this is an important distinction to
understand. Other languages don’t have the same distinctions, so let’s look
at what statements and expressions are and how their differences affect the
bodies of functions.

We've actually already used statements and expressions. Statements are
instructions that perform some action and do not return a value. Expressions
evaluate to a resulting value. Let’s look at some examples.

Creating a variable and assigning a value to it with the let keyword is a
statement. In Listing 3-1, let y = 6; is a statement.

Common Programming Concepts 45

src/main.rs

src/main.rs

src/main.rs

46

Chapter 3

fn main() {

let y = 6;
}

Listing 3-1: A main function declaration containing one statement

Function definitions are also statements; the entire preceding example
is a statement in itself.

Statements do not return values. Therefore, you can’t assign a let state-
ment to another variable, as the following code tries to do; you'll get an error:

fn main() {
let x = (let y = 6);
}

When you run this program, the error you’ll get looks like this:

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
error: expected expression, found statement (“let”)
--> src/main.rs:2:14

|
let x = (let y = 6);

| AANA

2

note: variable declaration using “let’ is a statement

The let y = 6 statement does not return a value, so there isn’t anything
for x to bind to. This is different from what happens in other languages, such
as C and Ruby, where the assignment returns the value of the assignment. In
those languages, you can write x = y = 6 and have both x and y contain the
value 6; that is not the case in Rust.

Expressions evaluate to something and make up most of the rest of
the code that you’ll write in Rust. Consider a simple math operation, such
as 5 + 6, which is an expression that evaluates to the value 11. Expressions
can be part of statements: in Listing 3-1, the 6 in the statement let y = 6; is
an expression that evaluates to the value 6. Calling a function is an expres-
sion. Calling a macro is an expression. The block that we use to create new
scopes, {}, is an expression, for example:

fn main() {
let x = 5;

O lety = {®
let x = 3;
O x +1

};

println!("The value of y is: {}", y);

src/main.rs

The expression @ is a block that, in this case, evaluates to 4. That
value gets bound to y as part of the let statement @. Note the line without
a semicolon at the end @, which is unlike most of the lines you've seen so
far. Expressions do not include ending semicolons. If you add a semicolon
to the end of an expression, you turn it into a statement, which will then not
return a value. Keep this in mind as you explore function return values and
expressions next.

Functions with Return Valves

Functions can return values to the code that calls them. We don’t name
return values, but we do declare their type after an arrow (->). In Rust,
the return value of the function is synonymous with the value of the final
expression in the block of the body of a function. You can return early
from a function by using the return keyword and specifying a value, but
most functions return the last expression implicitly. Here’s an example of
a function that returns a value:

fn five() -» i32 {

5
}
fn main() {

let x = five();

println!("The value of x is: {}", x);
}

There are no function calls, macros, or even let statements in the five
function—just the number 5 by itself. That’s a perfectly valid function in
Rust. Note that the function’s return type is specified too, as -> i32. Try
running this code; the output should look like this:

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/functions’
The value of x is: 5

The 5 in five is the function’s return value, which is why the return type
is 132. Let’s examine this in more detail. There are two important bits: first,
the line let x = five(); shows that we’re using the return value of a function
to initialize a variable. Because the function five returns a 5, that line is the
same as the following:

let x = 5;

Second, the five function has no parameters and defines the type of
the return value, but the body of the function is a lonely 5 with no semi-
colon because it’s an expression whose value we want to return.

Common Programming Concepts 47

src/main.rs

src/main.rs

48

Chapter 3

Let’s look at another example:

fn main() {

let x = plus_one(5);

println!("The value of x is: {}", x);

}

fn plus_one(x: i32) -> i32 {
X+ 1

}

Running this code will print The value of x is: 6. But if we place a semi-
colon at the end of the line containing x + 1, changing it from an expression
to a statement, we’ll get an error.

fn main() {

let x = plus_one(5);

println!("The value of x is: {}", x);

fn plus_one(x: i32) -> i32 {
X+ 1;
}

Compiling this code produces an error, as follows:

error[E0308]: mismatched types
--> src/main.rs:7:28

expected i32, found ()

7 | fn plus_one(x: i32) -> i32 {

| N
8 | | X + 1;

|| = help: consider removing this semicolon
91 |}

[

|

note: expected type “i32°
found type ()"

The main error message, “mismatched types,” reveals the core issue
with this code. The definition of the function plus_one says that it will return
an i32, but statements don’t evaluate to a value, which is expressed by (), an
empty tuple. Therefore, nothing is returned, which contradicts the function
definition and results in an error. In this output, Rust provides a message
to possibly help rectify this issue: it suggests removing the semicolon, which
would fix the error.

Comments

src/main.rs

src/main.rs

All programmers strive to make their code easy to understand, but some-
times extra explanation is warranted. In these cases, programmers leave
notes, or comments, in their source code that the compiler will ignore but
people reading the source code may find useful.

Here’s a simple comment:

// hello, world

In Rust, comments must start with two slashes and continue until the
end of the line. For comments that extend beyond a single line, you’ll need
to include // on each line, like this:

// So we're doing something complicated here, long enough that we need
// multiple lines of comments to do it! Whew! Hopefully, this comment will
// explain what's going on.

Comments can also be placed at the end of lines containing code:

fn main() {
let lucky_number = 7; // I'm feeling lucky today
}

But you’ll more often see them used in this format, with the comment
on a separate line above the code it’s annotating:

fn main() {
// I'm feeling lucky today
let lucky_number = 7;

Rust also has another kind of comment, documentation comments,
which we’ll discuss in “Publishing a Crate to Crates.io” on page 293.

Control Flow

Deciding whether or not to run some code depending on whether a condi-
tion is true and deciding to run some code repeatedly while a condition is
true are basic building blocks in most programming languages. The most
common constructs that let you control the flow of execution of Rust code
are if expressions and loops.

if Expressions

An if expression allows you to branch your code depending on conditions.
You provide a condition and then state, “If this condition is met, run this
block of code. If the condition is not met, do not run this block of code.”

Common Programming Concepts 49

src/main.rs

50

Chapter 3

Create a new project called branches in your projects directory to explore
the if expression. In the src/main.rs file, input the following:

fn main() {
let number = 3;

if number < 5 {

println!("condition was true");
} else {

println!("condition was false");
}

All if expressions start with the keyword if, which is followed by a
condition. In this case, the condition checks whether or not the vari-
able number has a value less than 5. The block of code we want to execute
if the condition is true is placed immediately after the condition inside
curly brackets. Blocks of code associated with the conditions in if expres-
sions are sometimes called arms, just like the arms in match expressions
that we discussed in “Comparing the Guess to the Secret Number” on
page 23.

Optionally, we can also include an else expression, which we chose to
do here, to give the program an alternative block of code to execute should
the condition evaluate to false. If you don’t provide an else expression
and the condition is false, the program will just skip the if block and move
on to the next bit of code.

Try running this code; you should see the following output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/branches)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/branches’
condition was true

Let’s try changing the value of number to a value that makes the condi-
tion false to see what happens:

let number = 7;

Run the program again, and look at the output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/branches)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/branches”
condition was false

src/main.rs

src/main.rs

src/main.rs

It’s also worth noting that the condition in this code must be a bool. If
the condition isn’t a bool, we’ll get an error. For example, try running the
following code:

fn main() {
let number = 3;

if number {
println!("number was three");
}

The if condition evaluates to a value of 3 this time, and Rust throws an
error:

error[E0308]: mismatched types
--> src/main.rs:4:8

|
| if number {

| At expected bool, found integral variable
|

note: expected type “bool”
found type ~{integer}"

The error indicates that Rust expected a bool but got an integer. Unlike
languages such as Ruby and JavaScript, Rust will not automatically try to
convert non-Boolean types to a Boolean. You must be explicit and always
provide if with a Boolean as its condition. If we want the if code block to run
only when a number is not equal to 0, for example, we can change the if
expression to the following:

fn main() {
let number = 3;

if number != 0 {
println!("number was something other than zero");

Running this code will print number was something other than zero.

Handling Multiple Conditions with else if

You can have multiple conditions by combining if and else in an else if
expression. For example:

fn main() {
let number = 6;

if number % 4 == 0 {

Common Programming Concepts 51

println!("number is divisible by 4");
} else if number % 3 == 0 {
println!("number is divisible by 3");
} else if number % 2 == 0 {
println!("number is divisible by 2");
} else {
println!("number is not divisible by 4, 3, or 2");
}

This program has four possible paths it can take. After running it, you
should see the following output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/branches)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/branches”
number is divisible by 3

When this program executes, it checks each if expression in turn and
executes the first body for which the condition holds true. Note that even
though 6 is divisible by 2, we don’t see the output number is divisible by 2,
nor do we see the number is not divisible by 4, 3, or 2 text from the else
block. That’s because Rust only executes the block for the first true condi-
tion, and once it finds one, it doesn’t even check the rest.

Using too many else if expressions can clutter your code, so if you have
more than one, you might want to refactor your code. Chapter 6 describes a
powerful Rust branching construct called match for these cases.

Using if in a let Statement

Because if is an expression, we can use it on the right side of a let state-
ment, as in Listing 3-2.

src/main.rs fn main() {
let condition = true;
let number = if condition {
5
} else {
6

};

println!("The value of number is: {}", number);

}

Listing 3-2: Assigning the result of an if expression to a variable

The number variable will be bound to a value based on the outcome of
the if expression. Run this code to see what happens:

$ cargo run
Compiling branches v0.1.0 (file:///projects/branches)

52 Chapter 3

src/main.rs

Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/branches”
The value of number is: 5

Remember that blocks of code evaluate to the last expression in them,
and numbers by themselves are also expressions. In this case, the value of
the whole if expression depends on which block of code executes. This
means the values that have the potential to be results from each arm of
the if must be the same type; in Listing 3-2, the results of both the if arm
and the else arm were i32 integers. If the types are mismatched, as in the
following example, we’ll get an error:

fn main() {
let condition = true;

let number = if condition {
5

} else {
"oy

};

println!("The value of number is: {}", number);

When we try to compile this code, we’ll get an error. The if and else
arms have value types that are incompatible, and Rust indicates exactly
where to find the problem in the program:

error[E0308]: if and else have incompatible types
--> src/main.rs:4:18

4 let number = if condition {
N
5 | 5
6 | | } else {
7 | llsixll
8 | | b
|

~ expected integral variable, found &str

note: expected type “{integer}"
found type “&str’

The expression in the if block evaluates to an integer, and the expres-
sion in the else block evaluates to a string. This won’t work because variables
must have a single type. Rust needs to know at compile time what type the
number variable is, definitively, so it can verify at compile time that its type is
valid everywhere we use number. Rust wouldn’t be able to do that if the type of
number was only determined at runtime; the compiler would be more complex
and would make fewer guarantees about the code if it had to keep track of
multiple hypothetical types for any variable.

Common Programming Concepts 53

src/main.rs

54

Chapter 3

Repetition with Loops

It’s often useful to execute a block of code more than once. For this task,
Rust provides several loops. A loop runs through the code inside the loop
body to the end and then starts immediately back at the beginning. To
experiment with loops, let’s make a new project called loops.

Rust has three kinds of loops: loop, while, and for. Let’s try each one.

Repeating Code with loop

The loop keyword tells Rust to execute a block of code over and over again
forever or until you explicitly tell it to stop.

As an example, change the src/main.rs file in your loops directory to
look like this:

fn main() {
loop {
println!("again!");
}

When we run this program, we’ll see again! printed over and over
continuously until we stop the program manually. Most terminals support
a keyboard shortcut, CTRL-C, to interrupt a program that is stuck in a con-
tinual loop. Give it a try:

$ cargo run
Compiling loops v0.1.0 (file:///projects/loops)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/loops”
again!
again!
again!
again!
“Cagain!

The symbol ~C represents where you pressed CTRL-C. You may or may
not see the word again! printed after the ~C, depending on where the code
was in the loop when it received the halt signal.

Fortunately, Rust provides another, more reliable way to break out of a
loop. You can place the break keyword within the loop to tell the program
when to stop executing the loop. Recall that we did this in the guessing
game in “Quitting After a Correct Guess” on page 27 to exit the program
when the user won the game by guessing the correct number.

Returning Values from Loops

One of the uses of a loop is to retry an operation you know might fail, such
as checking whether a thread has completed its job. However, you might
need to pass the result of that operation to the rest of your code. To do this,

src/main.rs

you can add the value you want returned after the break expression you use
to stop the loop; that value will be returned out of the loop so you can use
it, as shown here:

fn main() {
let mut counter = 0;

let result = loop {
counter += 1;

if counter == 10 {
break counter * 2;
}

I

println!("The result is {}", result);

Before the loop, we declare a variable named counter and initialize it to o.
Then we declare a variable named result to hold the value returned from the
loop. On every iteration of the loop, we add 1 to the counter variable, and then
check whether the counter is equal to 10. When it is, we use the break keyword
with the value counter * 2. After the loop, we use a semicolon to end the state-
ment that assigns the value to result. Finally, we print the value in result,
which in this case is 20.

Conditional Loops with while

It’s often useful for a program to evaluate a condition within a loop.
While the condition is true, the loop runs. When the condition ceases to
be true, the program calls break, stopping the loop. This loop type could be
implemented using a combination of loop, if, else, and break; you could try
that now in a program, if you’d like.

However, this pattern is so common that Rust has a built-in language
construct for it, called a while loop. Listing 3-3 uses while: the program
loops three times, counting down each time, and then, after the loop, it
prints another message and exits.

fn main() {
let mut number = 3;

while number != 0 {
println!("{}!", number);

number = number - 1;

}

println! ("LIFTOFF!!!");
}

Listing 3-3: Using a while loop to run code while a condition holds true

Common Programming Concepts 55

src/main.rs

src/main.rs

56

Chapter 3

This construct eliminates a lot of nesting that would be necessary if you
used loop, if, else, and break, and it’s clearer. While a condition holds true,
the code runs; otherwise, it exits the loop.

Looping Through a Collection with for

You could use the while construct to loop over the elements of a collection,
such as an array. For example, let’s look at Listing 3-4.

fn main() {
let a = [10, 20, 30, 40, 50];
let mut index = 0;

while index < 5 {
println!("the value is: {}", a[index]);

index = index + 1;

}

Listing 3-4: Llooping through each element of a collection using a while loop

Here, the code counts up through the elements in the array. It starts at
index 0, and then loops until it reaches the final index in the array (that is,
when index < 51is no longer true). Running this code will print every element
in the array:

$ cargo run
Compiling loops v0.1.0 (file:///projects/loops)
Finished dev [unoptimized + debuginfo] target(s) in 1.50 secs
Running "target/debug/loops”
the value is: 10
the value is: 20
the value is: 30
the value is: 40
the value is: 50

All five array values appear in the terminal, as expected. Even though
index will reach a value of 5 at some point, the loop stops executing before
trying to fetch a sixth value from the array.

But this approach is error prone; we could cause the program to panic
if the index length is incorrect. It’s also slow, because the compiler adds
runtime code to perform the conditional check on every element on every
iteration through the loop.

As a more concise alternative, you can use a for loop and execute some
code for each item in a collection. A for loop looks like the code in Listing 3-5.

fn main() {
let a = [10, 20, 30, 40, 50];

for element in a.iter() {

println!("the value is: {}", element);

}

Listing 3-5: Looping through each element of a collection using a for loop

When we run this code, we’ll see the same output as in Listing 3-4.
More importantly, we’ve now increased the safety of the code and elimi-
nated the chance of bugs that might result from going beyond the end of
the array or not going far enough and missing some items.

For example, in the code in Listing 3-4, if you removed an item from
the a array but forgot to update the condition to while index < 4, the code
would panic. Using the for loop, you wouldn’t need to remember to change
any other code if you changed the number of values in the array.

The safety and conciseness of for loops make them the most commonly
used loop construct in Rust. Even in situations in which you want to run
some code a certain number of times, as in the countdown example that
used a while loop in Listing 3-3, most Rustaceans would use a for loop. The
way to do that would be to use a Range, which is a type provided by the stan-
dard library that generates all numbers in sequence starting from one num-
ber and ending before another number.

Here’s what the countdown would look like using a for loop and
another method we’ve not yet talked about, rev, to reverse the range:

src/main.rs fn main() {
for number in (1..4).rev() {
println!("{}!", number);
println! ("LIFTOFF!!!");
}
This code is a bit nicer, isn’t it?
Summary

You made it! That was a sizable chapter: you learned about variables, scalar
and compound data types, functions, comments, if expressions, and loops!
If you want to practice with the concepts discussed in this chapter, try build-
ing programs to do the following:

e Convert temperatures between Fahrenheit and Celsius.
e Generate the nth Fibonacci number.

e Print the lyrics to the Christmas carol “The Twelve Days of Christmas,”
taking advantage of the repetition in the song.

When you’re ready to move on, we’ll talk about a concept in Rust that
doesn’t commonly exist in other programming languages: ownership.

Common Programming Concepts 57

UNDERSTANDING OWNERSHIP

Ownership is Rust’s most unique feature,
and it enables Rust to make memory safety

guarantees without needing a garbage col-

lector. Therefore, it’s important to understand
how ownership works in Rust. In this chapter, we’ll
talk about ownership as well as several related fea-
tures: borrowing, slices, and how Rust lays data out in
memory.

What Is Ownership?

Rust’s central feature is ownership. Although the feature is straightforward
to explain, it has deep implications for the rest of the language.

All programs have to manage the way they use a computer’s memory
while running. Some languages have garbage collection that constantly
looks for no longer used memory as the program runs; in other languages,

the programmer must explicitly allocate and free the memory. Rust uses a
third approach: memory is managed through a system of ownership with
a set of rules that the compiler checks at compile time. None of the owner-
ship features slow down your program while it’s running.

Because ownership is a new concept for many programmers, it does take
some time to get used to. The good news is that the more experienced you
become with Rust and the rules of the ownership system, the more you’ll be
able to naturally develop code that is safe and efficient. Keep at it!

When you understand ownership, you’ll have a solid foundation for
understanding the features that make Rust unique. In this chapter, you’ll
learn ownership by working through some examples that focus on a very
common data structure: strings.

THE STACK AND THE HEAP

In many programming languages, you don't have to think about the stack and
the heap very often. But in a systems programming language like Rust, whether
a value is on the stack or the heap has more of an effect on how the language
behaves and why you have to make certain decisions. Parts of ownership will
be described in relation to the stack and the heap later in this chapter, so here
is a brief explanation in preparation.

Both the stack and the heap are parts of memory that are available to your
code to use at runtime, but they are structured in different ways. The stack stores
values in the order it gets them and removes the values in the opposite order. This
is referred to as last in, first out. Think of a stack of plates: when you add more
plates, you put them on top of the pile, and when you need a plate, you take
one off the top. Adding or removing plates from the middle or bottom wouldn't
work as welll Adding data is called pushing onto the stack, and removing data
is called popping off the stack.

All data stored on the stack must have a known, fixed size. Data with an
unknown size at compile time or a size that might change must be stored on the
heap instead. The heap is less organized: when you put data on the heap, you
request a certain amount of space. The operating system finds an empty spot
in the heap that is big enough, marks it as being in use, and returns a pointer,
which is the address of that location. This process is called allocating on the
heap and is sometimes abbreviated as just allocating. Pushing values onto the
stack is not considered allocating. Because the pointer is a known, fixed size,
you can store the pointer on the stack, but when you want the actual data, you
must follow the pointer.

Think of being seated at a restaurant. When you enter, you state the num-
ber of people in your group, and the staff finds an empty table that fits every-
one and leads you there. If someone in your group comes late, they can ask
where you've been seated to find you.

60 Chapter 4

Pushing to the stack is faster than allocating on the heap because the oper-
ating system never has to search for a place to store new data; that location
is always at the top of the stack. Comparatively, allocating space on the heap
requires more work, because the operating system must first find a big enough
space to hold the data and then perform bookkeeping to prepare for the next
allocation.

Accessing data in the heap is slower than accessing data on the stack
because you have to follow a pointer to get there. Contemporary processors are
faster if they jump around less in memory. Continuing the analogy, consider a
server at a restaurant taking orders from many tables. It's most efficient to get all
the orders at one table before moving on to the next table. Taking an order from
table A, then an order from table B, then one from A again, and then one from
B again would be a much slower process. By the same token, a processor can
do its job better if it works on data that’s close to other data (as it is on the stack)
rather than farther away (as it can be on the heap). Allocating a large amount of
space on the heap can also take time.

When your code calls a function, the values passed into the function
(including, potentially, pointers to data on the heap) and the function’s local
variables get pushed onto the stack. When the function is over, those values
get popped off the stack.

Keeping track of what parts of code are using what data on the heap,
minimizing the amount of duplicate data on the heap, and cleaning up unused
data on the heap so you don't run out of space are all problems that ownership
addresses. Once you understand ownership, you won't need to think about the
stack and the heap very often, but knowing that managing heap data is why
ownership exists can help explain why it works the way it does.

Ownership Rules

First, let’s take a look at the ownership rules. Keep these rules in mind as we
work through the examples that illustrate them:

e Each value in Rust has a variable that’s called its owner.
e There can be only one owner at a time.

e When the owner goes out of scope, the value will be dropped.

Variable Scope

We’ve walked through an example of a Rust program already in Chapter 2.
Now that we’re past basic syntax, we won’t include all the fn main() { code
in examples, so if you're following along, you’ll have to put the following
examples inside a main function manually. As a result, our examples will
be a bit more concise, letting us focus on the details rather than boiler-
plate code.

Understanding Ownership 61

62

Chapter 4

As a first example of ownership, we’ll look at the scope of some variables.
A scope is the range within a program for which an item is valid. Let’s say
we have a variable that looks like this:

let s = "hello";

The variable s refers to a string literal, where the value of the string
is hardcoded into the text of our program. The variable is valid from the
point at which it’s declared until the end of the current scope. Listing 4-1
has comments annotating where the variable s is valid.

{ // s is not valid here; it's not yet declared
let s = "hello"; // s is valid from this point forward

// do stuff with s
} // this scope is now over, and s is no longer valid

Listing 4-1: A variable and the scope in which it is valid

In other words, there are two important points in time here:

e When s comes into scope, it is valid.

e It remains valid until it goes out of scope.

At this point, the relationship between scopes and when variables are
valid is similar to that in other programming languages. Now we’ll build on
top of this understanding by introducing the String type.

The String Type

To illustrate the rules of ownership, we need a data type that is more complex
than the ones we covered in “Data Types” on page 36. The types covered
previously are all stored on the stack and popped off the stack when their
scope is over, but we want to look at data that is stored on the heap and
explore how Rust knows when to clean up that data.

We’ll use String as the example here and concentrate on the parts of
String that relate to ownership. These aspects also apply to other complex
data types provided by the standard library and that you create. We’ll dis-
cuss String in more depth in Chapter 8.

We've already seen string literals, where a string value is hardcoded into
our program. String literals are convenient, but they aren’t suitable for every
situation in which we may want to use text. One reason is that they’re immu-
table. Another is that not every string value can be known when we write
our code: for example, what if we want to take user input and store it? For
these situations, Rust has a second string type, String. This type is allocated
on the heap and as such is able to store an amount of text that is unknown
to us at compile time. You can create a String from a string literal using the
from function, like so:

let s = String::from("hello");

The double colon (::) is an operator that allows us to namespace this
particular from function under the String type rather than using some sort
of name like string from. We’ll discuss this syntax more in “Method Syntax”
on page 92 and when we talk about namespacing with modules in “Paths
for Referring to an Item in the Module Tree” on page 115.

This kind of string can be mutated:

let mut s = String::from("hello");
s.push_str(", world!"); // push_str() appends a literal to a String

println!("{}", s); // this will print “hello, world!"

So, what’s the difference here? Why can String be mutated but literals
cannot? The difference is how these two types deal with memory.

Memory and Allocation

In the case of a string literal, we know the contents at compile time, so
the text is hardcoded directly into the final executable. This is why string
literals are fast and efficient. But these properties only come from the
string literal’s immutability. Unfortunately, we can’t put a blob of memory
into the binary for each piece of text whose size is unknown at compile time
and whose size might change while running the program.

With the String type, in order to support a mutable, growable piece of
text, we need to allocate an amount of memory on the heap, unknown at
compile time, to hold the contents. This means:

e The memory must be requested from the operating system at runtime.

e We need a way of returning this memory to the operating system when
we’re done with our String.

That first part is done by us: when we call String: :from, its implementa-
tion requests the memory it needs. This is pretty much universal in pro-
gramming languages.

However, the second part is different. In languages with a garbage collector
(GC), the GC keeps track and cleans up memory that isn’t being used any-
more, and we don’t need to think about it. Without a GG, it’s our respon-
sibility to identify when memory is no longer being used and call code to
explicitly return it, just as we did to request it. Doing this correctly has histori-
cally been a difficult programming problem. If we forget, we’ll waste memory.
If we do it too early, we’ll have an invalid variable. If we do it twice, that’s a
bug too. We need to pair exactly one allocate with exactly one free.

Rust takes a different path: the memory is automatically returned once
the variable that owns it goes out of scope. Here’s a version of our scope
example from Listing 4-1 using a String instead of a string literal:

{

let s = String::from("hello"); // s is valid from this point forward

Understanding Ownership 63

64

NOTE

Chapter 4

// do stuff with s
} // this scope is now over, and s is no
// longer valid

There is a natural point at which we can return the memory our String
needs to the operating system: when s goes out of scope. When a variable
goes out of scope, Rust calls a special function for us. This function is
called drop, and it’s where the author of String can put the code to return
the memory. Rust calls drop automatically at the closing curly bracket.

In C++, this pattern of deallocating resources at the end of an item’s lifetime is some-
times called Resource Acquisition Is Initialization (RAII). The drop function in
Rust will be familiar to you if you've used RAII patterns.

This pattern has a profound impact on the way Rust code is written. It
may seem simple right now, but the behavior of code can be unexpected in
more complicated situations when we want to have multiple variables use the
data we’ve allocated on the heap. Let’s explore some of those situations now.

Ways That Variables and Data Interact: Move

Multiple variables can interact with the same data in different ways in Rust.
Let’s look at an example using an integer in Listing 4-2.

let x
let y

5;
X3

Listing 4-2: Assigning the integer value of variable x to y

We can probably guess what this is doing: “bind the value 5 to x; then
make a copy of the value in x and bind it to y.” We now have two variables, x
and y, and both equal 5. This is indeed what is happening, because integers
are simple values with a known, fixed size and these two 5 values are pushed
onto the stack.

Now let’s look at the String version:

let s1
let s2

String::from("hello");
s1;

This looks very similar to the previous code, so we might assume that
the way it works would be the same: that is, the second line would make a
copy of the value in s1 and bind it to s2. But this isn’t quite what happens.

Take a look at Figure 4-1 to see what is happening to String under the
covers. A String is made up of three parts, shown on the left: a pointer to
the memory that holds the contents of the string, a length, and a capacity.
This group of data is stored on the stack. On the right is the memory on the
heap that holds the contents.

The length is how much s1

memory, in bytes, the contents name |value index|value
of the String is currently using. ptr »| 0 h
The capacity is the total amount len 5 1 o
of memory, in bytes, that the String capacity| 5 > |
has received from the operating 3 |
system. The difference between 2 S

length and capacity matters, but
not in this context, so for now, it’s Fi) L
igure 4-1: Representation in memory

fine to ignore th-e capacity. of a String holding the value "hello"
When we assign s1 to s2, the bound to s1

String data is copied, meaning we

copy the pointer, the length, and the

capacity that are on the stack. We do not copy the data on the heap that the
pointer refers to. In other words, the data representation in memory looks
like Figure 4-2.

The representation does not look like Figure 4-3, which is what memory
would look like if Rust instead copied the heap data as well. If Rust did this,
the operation s2 = s1 could be very expensive in terms of runtime perfor-
mance if the data on the heap were large.

s2
name |value index|value
ptr » O h
1
> len 5 1 e
name |value
capacity| 5 2 |
ptr N 3 |
| 5
l - 4 o
capacity| 5 index|value <1
0 h name [value index|value
s2 ! € ptr > O h
name |value 2 ! len 5 1 e
pir < 3 ! capacity| 5 2 |
len 5 4 ° 3 |
capacity| 5 4 o
Figure 4-2: Representation in memory Figure 4-3: Another possibility for what
of the variable s2 that has a copy of the s2 = s1 might do if Rust copied the
pointer, length, and capacity of s1 heap data as well

Earlier, we said that when a variable goes out of scope, Rust automati-
cally calls the drop function and cleans up the heap memory for that variable.
But Figure 4-2 shows both data pointers pointing to the same location. This is
a problem: when s2 and s1 go out of scope, they will both try to free the same
memory. This is known as a double free error and is one of the memory safety
bugs we mentioned previously. Freeing memory twice can lead to memory
corruption, which can potentially lead to security vulnerabilities.

Understanding Ownership 03

66

Chapter 4

To ensure memory safety, there’s one more detail to what happens in
this situation in Rust. Instead of trying to copy the allocated memory, Rust
considers s1 to no longer be valid and, therefore, Rust doesn’t need to free
anything when s1 goes out of scope. Check out what happens when you try
to use s1 after s2 is created; it won’t work:

let s1
let s2

String::from("hello");
s1;

println!("{}, world!", s1);

You'll get an error like this because Rust prevents you from using the
invalidated reference:

error[E0382]: use of moved value: “si’
--> src/main.rs:5:28

3 let s2 = s1;

-- value moved here
4
5

|
|
|
| println!("{}, world!", s1);
| "M value used here after move
|

note: move occurs because “s1° has type “std::string::String’, which does
not implement the “Copy™ trait

If you've heard the terms shallow

copy and deep copy while working with nam:1 valoe

other languages, the concept of copy- o

ing the pointer, length, and capacity o 5\

without copying the data probably -

sounds like making a shallow copy. capacity) 5 index | value
But because Rust also invalidates the 0 h
first variable, instead of being called 2 1 e
a shallow copy, it’s known as a move. name Ivalue 2 [
In this example, we would say that s1 pir 7 3 |
was moved into s2. So what actually lon 5 4 o
happens is shown in Figure 4-4. capaciy| 5

That solves our problem! With
only s2 valid, when it goes out of Figure 4-4: Representation in memory
scope, it alone will free the memory, after s1 has been invalidated
and we’re done.

In addition, there’s a design choice that’s implied by this: Rust will
never automatically create “deep” copies of your data. Therefore, any
automalic copying can be assumed to be inexpensive in terms of runtime
performance.

Ways That Variables and Data Interact: Clone

If we dowant to deeply copy the heap data of the String, not just the stack
data, we can use a common method called clone. We’ll discuss method syn-
tax in Chapter 5, but because methods are a common feature in many pro-
gramming languages, you’ve probably seen them before.

Here’s an example of the clone method in action:

let s1 = String::from("hello");
let s2 = si.clone();

println!("s1 = {}, s2 = {}", s1, s2);

This works just fine and explicitly produces the behavior shown in
Figure 4-3, where the heap data does get copied.

When you see a call to clone, you know that some arbitrary code is being
executed and that code may be expensive. It’s a visual indicator that some-
thing different is going on.

Stack-Only Data: Copy

There’s another wrinkle we haven’t talked about yet. This code using integers,
part of which was shown in Listing 4-2, works and is valid:

let x = 5;
lety = x;

printIn!("x = {}, y = {}", x, y);

But this code seems to contradict what we just learned: we don’t have a
call to clone, but x is still valid and wasn’t moved into y.

The reason is that types such as integers that have a known size at com-
pile time are stored entirely on the stack, so copies of the actual values are
quick to make. That means there’s no reason we would want to prevent x
from being valid after we create the variable y. In other words, there’s no dif-
ference between deep and shallow copying here, so calling clone wouldn’t do
anything different from the usual shallow copying and we can leave it out.

Rust has a special annotation called the Copy trait that we can place on
types like integers that are stored on the stack (we’ll talk more about traits
in Chapter 10). If a type has the Copy trait, an older variable is still usable
after assignment. Rust won’t let us annotate a type with the Copy trait if the
type, or any of its parts, has implemented the Drop trait. If the ty